This example guides you through the process of taking an example model, modifying it to run better within Kubeflow, and serving the resulting trained model. We will be using Argo to manage the workflow, Tensorflow's S3 support for saving model training info, Tensorboard to visualize the training, and Kubeflow to deploy the Tensorflow operator and serve the model.
Before we get started there a few requirements.
Your cluster must:
- Be at least version 1.9
- Have access to an S3-compatible object store (Amazon S3, Google Storage, Minio)
- Contain 3 nodes of at least 8 cores and 16 GB of RAM.
If using GKE, the following will provision a cluster with the required features:
export CLOUDSDK_CONTAINER_USE_CLIENT_CERTIFICATE=True
gcloud alpha container clusters create ${USER} --enable-kubernetes-alpha --machine-type=n1-standard-8 --num-nodes=3 --disk-size=200 --zone=us-west1-a --cluster-version=1.9.3-gke.0 --image-type=UBUNTU
If using Azure, the following will provision a cluster with the required features, using the az cli:
# Create a resource group
az group create -n kubeflowrg -l eastus
# Deploy the cluster
az aks create -n kubeflowaks -g kubeflowrg -l eastus -k 1.9.6 -c 3 -s Standard_NC6
# Authentication into the cluster
az aks get-credentials -n kubeflowaks -g kubeflowrg
NOTE: You must be a Kubernetes admin to follow this guide. If you are not an admin, please contact your local cluster administrator for a client cert, or credentials to pass into the following commands:
$ kubectl config set-credentials <username> --username=<admin_username> --password=<admin_password>
$ kubectl config set-context <context_name> --cluster=<cluster_name> --user=<username> --namespace=<namespace>
$ kubectl config use-context <context_name>
You also need the following command line tools:
To run the client at the end of the example, you must have requirements.txt intalled in your active python environment.
pip install -r requirements.txt
NOTE: These instructions rely on Github, and may cause issues if behind a firewall with many Github users. Make sure you generate and export this token:
export GITHUB_TOKEN=xxxxxxxx
Many examples online use models that are unconfigurable, or don't work well in distributed mode. We will modify one of these examples to be better suited for distributed training and model serving.
There is a delta between existing distributed mnist examples and what's needed to run well as a TFJob.
Basically, we must:
- Add options in order to make the model configurable.
- Use
tf.estimator.train_and_evaluate
to enable model exporting and serving. - Define serving signatures for model serving.
The resulting model is model.py.
With our code ready, we will now build/push the docker image.
DOCKER_BASE_URL=docker.io/elsonrodriguez # Put your docker registry here
docker build . --no-cache -f Dockerfile.model -t ${DOCKER_BASE_URL}/mytfmodel:1.7
docker push ${DOCKER_BASE_URL}/mytfmodel:1.7
With our data and workloads ready, now the cluster must be prepared. We will be deploying the TF Operator, and Argo to help manage our training job.
In the following instructions we will install our required components to a single namespace. For these instructions we will assume the chosen namespace is tfworkflow
:
We are using the Tensorflow operator to automate the deployment of our distributed model training, and Argo to create the overall training pipeline. The easiest way to install these components on your Kubernetes cluster is by using Kubeflow's ksonnet prototypes.
NAMESPACE=tfworkflow
APP_NAME=my-kubeflow
ks init ${APP_NAME}
cd ${APP_NAME}
ks registry add kubeflow github.com/kubeflow/kubeflow/tree/v0.2.4/kubeflow
ks pkg install kubeflow/core@v0.2.4
ks pkg install kubeflow/argo
# Deploy TF Operator and Argo
kubectl create namespace ${NAMESPACE}
ks generate core kubeflow-core --name=kubeflow-core --namespace=${NAMESPACE}
ks generate argo kubeflow-argo --name=kubeflow-argo --namespace=${NAMESPACE}
ks apply default -c kubeflow-core
ks apply default -c kubeflow-argo
# Switch context for the rest of the example
kubectl config set-context $(kubectl config current-context) --namespace=${NAMESPACE}
cd -
# Create a user for our workflow
kubectl apply -f tf-user.yaml
You can check to make sure the components have deployed:
$ kubectl get pods -l name=tf-job-operator
NAME READY STATUS RESTARTS AGE
tf-job-operator-78757955b-2glvj 1/1 Running 0 1m
$ kubectl get pods -l app=workflow-controller
NAME READY STATUS RESTARTS AGE
workflow-controller-7d8f4bc5df-4zltg 1/1 Running 0 1m
$ kubectl get crd
NAME AGE
tfjobs.kubeflow.org 1m
workflows.argoproj.io 1m
$ argo list
NAME STATUS AGE DURATION
For fetching and uploading data, our workflow requires S3 credentials and variables. These credentials will be provided as kubernetes secrets, and the variables will be passed into the workflow. Modify the below values to suit your environment.
export S3_ENDPOINT=s3.us-west-2.amazonaws.com #replace with your s3 endpoint in a host:port format, e.g. minio:9000
export AWS_ENDPOINT_URL=https://${S3_ENDPOINT} #use http instead of https for default minio installs
export AWS_ACCESS_KEY_ID=xxxxx
export AWS_SECRET_ACCESS_KEY=xxxxx
export AWS_REGION=us-west-2
export BUCKET_NAME=mybucket
export S3_USE_HTTPS=1 #set to 0 for default minio installs
export S3_VERIFY_SSL=1 #set to 0 for defaul minio installs
kubectl create secret generic aws-creds --from-literal=awsAccessKeyID=${AWS_ACCESS_KEY_ID} \
--from-literal=awsSecretAccessKey=${AWS_SECRET_ACCESS_KEY}
This is the bulk of the work, let's walk through what is needed:
- Train the model
- Export the model
- Serve the model
Now let's look at how this is represented in our example workflow
The argo workflow can be daunting, but basically our steps above extrapolate as follows:
get-workflow-info
: Generate and set variables for consumption in the rest of the pipeline.tensorboard
: Tensorboard is spawned, configured to watch the S3 URL for the training output.train-model
: A TFJob is spawned taking in variables such as number of workers, what path the datasets are at, which model container image, etc. The model is exported at the end.serve-model
: Optionally, the model is served.
With our workflow defined, we can now execute it.
First we need to set a few variables in our workflow. Make sure to set your docker registry or remove the IMAGE
parameters in order to use our defaults:
DOCKER_BASE_URL=docker.io/elsonrodriguez # Put your docker registry here
export S3_DATA_URL=s3://${BUCKET_NAME}/data/mnist/
export S3_TRAIN_BASE_URL=s3://${BUCKET_NAME}/models
export JOB_NAME=myjob-$(uuidgen | cut -c -5 | tr '[:upper:]' '[:lower:]')
export TF_MODEL_IMAGE=${DOCKER_BASE_URL}/mytfmodel:1.7
export TF_WORKER=3
export MODEL_TRAIN_STEPS=200
Next, submit your workflow.
argo submit model-train.yaml -n ${NAMESPACE} --serviceaccount tf-user \
-p aws-endpoint-url=${AWS_ENDPOINT_URL} \
-p s3-endpoint=${S3_ENDPOINT} \
-p aws-region=${AWS_REGION} \
-p tf-model-image=${TF_MODEL_IMAGE} \
-p s3-data-url=${S3_DATA_URL} \
-p s3-train-base-url=${S3_TRAIN_BASE_URL} \
-p job-name=${JOB_NAME} \
-p tf-worker=${TF_WORKER} \
-p model-train-steps=${MODEL_TRAIN_STEPS} \
-p s3-use-https=${S3_USE_HTTPS} \
-p s3-verify-ssl=${S3_VERIFY_SSL} \
-p namespace=${NAMESPACE}
Your training workflow should now be executing.
You can verify and keep track of your workflow using the argo commands:
$ argo list
NAME STATUS AGE DURATION
tf-workflow-h7hwh Running 1h 1h
$ argo get tf-workflow-h7hwh
There are various ways to monitor workflow/training job. In addition to using kubectl
to query for the status of pods
, some basic dashboards are also available.
The Argo UI is useful for seeing what stage your worfklow is in:
PODNAME=$(kubectl get pod -l app=argo-ui -n${NAMESPACE} -o jsonpath='{.items[0].metadata.name}')
kubectl port-forward ${PODNAME} 8001:8001
You should now be able to visit http://127.0.0.1:8001 to see the status of your workflows.
Tensorboard is deployed just before training starts. To connect:
PODNAME=$(kubectl get pod -l app=tensorboard-${JOB_NAME} -o jsonpath='{.items[0].metadata.name}')
kubectl port-forward ${PODNAME} 6006:6006
Tensorboard can now be accessed at http://127.0.0.1:6006.
By default the workflow deploys our model via Tensorflow Serving. Included in this example is a client that can query your model and provide results:
POD_NAME=$(kubectl get pod -l=app=mnist-${JOB_NAME} -o jsonpath='{.items[0].metadata.name}')
kubectl port-forward ${POD_NAME} 9000:9000 &
TF_MNIST_IMAGE_PATH=data/7.png python mnist_client.py
This should result in output similar to this, depending on how well your model was trained:
outputs {
key: "classes"
value {
dtype: DT_UINT8
tensor_shape {
dim {
size: 1
}
}
int_val: 7
}
}
outputs {
key: "predictions"
value {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 1
}
dim {
size: 10
}
}
float_val: 0.0
float_val: 0.0
float_val: 0.0
float_val: 0.0
float_val: 0.0
float_val: 0.0
float_val: 0.0
float_val: 1.0
float_val: 0.0
float_val: 0.0
}
}
............................
............................
............................
............................
............................
............................
............................
..............@@@@@@........
..........@@@@@@@@@@........
........@@@@@@@@@@@@........
........@@@@@@@@.@@@........
........@@@@....@@@@........
................@@@@........
...............@@@@.........
...............@@@@.........
...............@@@..........
..............@@@@..........
..............@@@...........
.............@@@@...........
.............@@@............
............@@@@............
............@@@.............
............@@@.............
...........@@@..............
..........@@@@..............
..........@@@@..............
..........@@................
............................
Your model says the above number is... 7!
You can also omit TF_MNIST_IMAGE_PATH
, and the client will pick a random number from the mnist test data. Run it repeatedly and see how your model fares!
Model serving can be turned off by passing in -p model-serving=false
to the model-train.yaml
workflow. Then if you wish to serve your model after training, use the model-deploy.yaml
workflow. Simply pass in the desired finished argo workflow as an argument:
WORKFLOW=<the workflowname>
argo submit model-deploy.yaml -n ${NAMESPACE} -p workflow=${WORKFLOW} --serviceaccount=tf-user
If you want to rerun your workflow from scratch, then you will need to provide a new job-name
to the argo workflow. For example:
#We're re-using previous variables except JOB_NAME
export JOB_NAME=myawesomejob
argo submit model-train.yaml -n ${NAMESPACE} --serviceaccount tf-user \
-p aws-endpoint-url=${AWS_ENDPOINT_URL} \
-p s3-endpoint=${S3_ENDPOINT} \
-p aws-region=${AWS_REGION} \
-p tf-model-image=${TF_MODEL_IMAGE} \
-p s3-data-url=${S3_DATA_URL} \
-p s3-train-base-url=${S3_TRAIN_BASE_URL} \
-p job-name=${JOB_NAME} \
-p tf-worker=${TF_WORKER} \
-p model-train-steps=${MODEL_TRAIN_STEPS} \
-p namespace=${NAMESPACE}
This is an example of what your machine learning pipeline can look like. Feel free to play with the tunables and see if you can increase your model's accuracy (increasing model-train-steps
can go a long way).