-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit.py
107 lines (75 loc) · 3.11 KB
/
split.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
import shutil
import random
import sys
import math
import cv2 as cv
# NB: This will take all classes and split each class the % split defined. As the
# classes are not even in size, preprocessing will need to occur on the training set
# classes so that there is now an even number of images across all classes. This is to
# prevent training a biased model towards a particular class with more images in the
# training set.
def main():
# Clear out the dataset folders
try:
shutil.rmtree("./trainingSet")
except FileNotFoundError:
pass
os.mkdir("./trainingSet")
try:
shutil.rmtree("./testSet")
except FileNotFoundError:
pass
os.mkdir("./testSet")
try:
shutil.rmtree("./validationSet")
except FileNotFoundError:
pass
os.mkdir("./validationSet")
trainingSplit = input("Enter the % training split:")
validationSplit = input("Enter the % validation split:")
testSplit = input("Enter the % test split:")
if int(trainingSplit) + int(validationSplit) + int(testSplit) == 100:
print("Splitting dataset...")
else:
print("Error: Invalid Split")
quit()
categories = os.listdir("./originalImages")
for folder in categories:
print("-------------------------------------")
print("Processing class {}".format(folder))
# Get the file paths to all the input images
files = os.listdir("./originalImages/{}".format(folder))
# Get number of files in each folder
numberOfFiles = len([name for name in files if os.path.isfile(os.path.join("./originalImages/{}".format(folder), name))])
print("Total images: {}".format(numberOfFiles))
numberTrainingImages = math.floor(numberOfFiles / 100* int(trainingSplit))
numberValidationImages = math.floor(numberOfFiles / 100 * int(validationSplit))
numberTestImages = math.floor(numberOfFiles / 100 * int(testSplit))
print("Number of training images: {}".format(numberTrainingImages))
print("Number of validation images: {}".format(numberValidationImages))
print("Number of test images: {}".format(numberTestImages))
#-------------------------
# SOMETHING HERE TO CONVERT % SPLIT TO NUMBER OF FILES FOR EACH FOLDER TO OUTPUT
#-------------------------
# Create an training set output folders
os.mkdir("./trainingSet/{}{}-{}".format(trainingSplit,"%",folder))
# Create a validation set output folder
os.mkdir("./validationSet/{}{}-{}".format(validationSplit,"%",folder))
# Create a test set output folder
os.mkdir("./testSet/{}{}-{}".format(testSplit,"%",folder))
fileName = 1
for pictureName in files:
rnumber = random.randint(1,101)
picture = cv.imread("./originalImages/{}/{}".format(folder,pictureName))
if rnumber <= int(trainingSplit):
cv.imwrite("./trainingSet/{}{}-{}/{}.jpg".format(trainingSplit,"%",folder,fileName), picture)
fileName = fileName + 1
elif rnumber <= int(trainingSplit) + int(validationSplit):
cv.imwrite("./validationSet/{}{}-{}/{}.jpg".format(validationSplit,"%",folder,fileName), picture)
fileName = fileName + 1
else:
cv.imwrite("./testSet/{}{}-{}/{}.jpg".format(testSplit,"%",folder,fileName), picture)
fileName = fileName + 1
if __name__ == '__main__':
main()