-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
574 lines (521 loc) · 25 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
from math import pi, exp
import math
import torch as t
from torch import nn
from torch.nn import functional as F
from torch.nn.modules import activation
import torch_geometric as tm
from torch_geometric.data import Data
from torch.autograd import Variable
import numpy as np
from torch.nn import init
from torch_geometric.nn.conv.gcn_conv import GCNConv
from torch_geometric.nn.conv.message_passing import MessagePassing
# from torch_geometric.nn.conv.transformer_conv import TransformerConv
# from conv_transformer import TransformerConv
# from torch_geometric.nn.conv.gatv2_conv import GATv2Conv
from gat_v2_conv import GATv2Conv
from torch_geometric.nn.pool.sag_pool import SAGPooling
from torch_geometric.typing import Adj
device = 3
class Encoder(nn.Module):
def __init__(self, input_len, ques_len, cls_dim, hid_dim=768, g_hid_dim=384, sens_len=512, heads=8, **kwargs):
super(Encoder, self).__init__(**kwargs)
"""
Parameters:
quary:R{n,d,l}
ques :R{m,d,l}
"""
self.quary_len = input_len
self.ques_len = ques_len
self.batch_size = self.quary_len + self.ques_len
self.cls_dim = cls_dim
self.hid_dim = hid_dim
self.sens_len = sens_len
self.heads = heads
self.g_hid_dim = g_hid_dim
self.sen_len_trans = [sens_len - 1, int((sens_len - 1) / 4), int((sens_len - 1) / 32), self.cls_dim + 1]
self.init_sentence()
self.init_graph()
self.cauchy_param = t.Tensor([2.]).cuda(device)
nn.Parameter(self.cauchy_param, requires_grad=True)
def init_sentence(self):
self.encoderlayer1 = nn.TransformerEncoderLayer(self.hid_dim, self.heads, activation='gelu', batch_first=True).cuda(device) #self.hid_dim=512->sen_len batch_first = True
self.encoder1 = nn.TransformerEncoder(self.encoderlayer1, 6).cuda(device)
self.lin1 = nn.Sequential(
nn.Linear(self.sens_len + 1, self.sens_len + 1),
nn.Dropout(0.2)
).cuda(device)
self.posm = [
MessageMaxSelector(self.batch_size, self.hid_dim, self.heads).cuda(device),
MessageMaxSelector(self.batch_size, self.hid_dim, self.heads).cuda(device),
MessageMaxSelector(self.batch_size, self.hid_dim, self.heads).cuda(device),
MessageMaxSelector(self.batch_size, self.hid_dim, self.heads).cuda(device),
]
self.lin = [
nn.Sequential(
nn.Linear(self.sen_len_trans[i], self.sen_len_trans[i]),
nn.Dropout(0.2)
).cuda(device) for i in range(4)
]
self.norm1 = nn.BatchNorm2d(self.cls_dim + 1).cuda(device)
self.norm2 = nn.BatchNorm1d(self.batch_size).cuda(device)
self.regularizer = Regularizer(1, 5e-2, 1e9)
# self.rnn = nn.Sequential([
# nn.RNN(self.sens_len, self.sens_len / 2, self.hid_dim),
# nn.Linear(self.cls_dim, self.cls_dim),
# nn.ReLU()
# ]).cuda(device)
def init_graph(self):
# self.para_init()
self.conv1 = GCNConv(int(self.g_hid_dim), int(self.g_hid_dim)).cuda(device)
# self.conv2 = TransformerConv(int(self.hid_dim / 2), int(self.hid_dim / 2)).cuda(device)
# self.conv3 = TransformerConv(int(self.hid_dim / 2), int(self.hid_dim / 2)).cuda(device)
self.conv4 = GCNConv(int(self.g_hid_dim), int(self.g_hid_dim)).cuda(device)
def adjacency(self, idx: t.Tensor=t.zeros((0,))):
node2idx = self.node0
if idx != None:
node2idx = t.cat([self.node0, idx], dim=0)
idx2node = {}
for node, idx in node2idx:
idx2node[idx] = node
ad_mat = Variable(t.zeros((node2idx.size(0), node2idx.size(0)))).cuda(device)
for i in self.edge_index.permute(1, 0):
if idx2node.get(i[0]) is not None and idx2node.get(i[1]) is not None:
a, b = idx2node[i[0]], idx2node[i[1]]
ad_mat[a][b] = 1
ad_mat[b][a] = 1
if idx != None:
for i in range(len(idx)):
ad_mat = ad_mat[:self.node0.size(0)][self.node0.size(0):]
return ad_mat
def cauchy_selector(self, x):
base = t.sqrt(t.sum(t.pow(x, 2), dim=2).unsqueeze(2))
out = t.div(t.bmm(x, x.permute(0, 2, 1)),
t.bmm(base, base.permute(0, 2, 1))
)
out -= t.eye(self.batch_size).unsqueeze(0).repeat((self.cls_dim, 1, 1)).cuda(device)
# out = t.pow(out, t.exp(self.cauchy_param))
pos = 0.5 - 0.5 * t.cos(pi * out)
out += pos
return out
# def para_init(self):
# init.uniform_(self.gamma)
def normal_edge(self, adj_, sigma=0.5):
data = []
adj = self.norm2(t.sum(adj_, dim=-1))
i = 0
for adj_i in adj:
adj_edge = (adj_i > sigma).type(t.float)
edge_index = adj_edge.nonzero().t()
row, col = edge_index
edge_weight = adj_[i, row, col, :]
# x = t.diagonal(adj_edge @ adj_edge).unsqueeze(1).type(t.float)
x = t.diagonal(adj_[i]).permute(1, 0)
data.append(Data(x=x, edge_index=edge_index.contiguous(), edge_weight=edge_weight).cuda(device))
i += 1
return data
def posm_box(self, q, i):
q = self.posm[i](q, last_mask=True) # in:(b,d,l) out:(b,l,d)
q, mask = q[:, :, :-1], q[:, :, -1:]
mask += t.sum(q[:, :, self.sen_len_trans[i] - 1:], -1).unsqueeze(-1)
q = q[:, :, :self.sen_len_trans[i] - 1]
q = t.cat([q, mask], -1)
q = self.lin[i](q)
return q
def coo_edge(self, x):
adj = []
assert self.hid_dim % self.g_hid_dim == 0
for i in range(self.g_hid_dim):
adj.append(self.cauchy_selector(x[:, :, i:i + 2]).unsqueeze(-1))
# for i in range(adj.size(0)):
# adj[i, t.eye(adj.size(1), dtype=t.bool)] = 0
# adj = self.norm2(adj.unsqueeze(0)).squeeze(0)
adj = t.cat(adj, -1)
return self.normal_edge(adj)
def _build_sentence(self, input:t.Tensor, ques:t.Tensor):
q = t.cat([input, ques], dim=0)
q, mask = q[:, :, :-1], q[:, :, -1:]
q = q.permute(0, 2, 1) # n, l, d
# print(q.size())
q = self.encoder1(q).permute(0, 2, 1)
q = t.cat([q, mask], dim=-1)
q = self.lin1(q)
for i in range(4):
q = self.posm_box(q, i)
q = q.permute(2, 0, 1)
q = self.norm1(q.unsqueeze(0)).squeeze(0)
q = q.permute(1, 2, 0)
q, label = q[:, :, :-1], q[:, :, -1:] # (b, d, l)
# q = q.permute(0, 2, 1)
data = self.coo_edge(q.permute(2, 0, 1))
return data, label
def _build_prob_graph_sample(self, data):
for i in range(len(data)):
data[i].x += self.conv1(data[i].x, data[i].edge_index)
data[i].x += self.conv4(data[i].x, data[i].edge_index)
return data
def forward(self, input: t.Tensor, ques: t.Tensor):
data, label = self._build_sentence(input, ques)
data = self._build_prob_graph_sample(data)
# data = self.graph_models(data)
return data, label
class MessageMaxSelector(nn.Module):
def __init__(self, batch, in_features, trans_layers=8):
"""
x:(b,d,l)->batch,dim,length
in_feature:dim
trans_layers:(dim/*)!=0
"""
super(MessageMaxSelector, self).__init__()
self.batch = batch
layers = [in_features, in_features]
self.lin1 = nn.Sequential(
nn.Conv1d(in_features, layers[0], 1),
*[nn.Conv1d(layers[i], layers[i + 1], 1) for i in range(len(layers) - 1)],
nn.Conv1d(layers[-1], in_features, 1)
).cuda(device)
self.lin2 = nn.Sequential(
nn.Conv1d(in_features, layers[0], 1),
*[nn.Conv1d(layers[i], layers[i + 1], 1) for i in range(len(layers) - 1)],
nn.Conv1d(layers[-1], in_features, 1)
).cuda(device)
self.lin3 = nn.Sequential(
nn.Conv1d(in_features, layers[0], 1),
*[nn.Conv1d(layers[i], layers[i + 1], 1) for i in range(len(layers) - 1)],
nn.Conv1d(layers[-1], in_features, 1)
).cuda(device)
self.lin4 = nn.Sequential(
nn.Conv1d(in_features, layers[0], 1),
*[nn.Conv1d(layers[i], layers[i + 1], 1) for i in range(len(layers) - 1)],
nn.Conv1d(layers[-1], in_features, 1)
).cuda(device)
# self.trans = nn.TransformerEncoderLayer(in_features, trans_layers, activation='gelu', batch_first=True) #(b, l, h)->(b, l, t) , batch_first=True
# self.encoder = nn.TransformerEncoder(self.trans, trans_layers)
# self.alpha = t.Tensor([1])
# self.beta = t.Tensor([1])
# nn.Parameter(self.alpha, requires_grad=True)
# nn.Parameter(self.beta, requires_grad=True)
def idx_select(self, x, idx):
x_view = x.view(x.size(0)*x.size(1),-1).unsqueeze(1)
y = t.zeros_like(x_view).cuda(device)
for i in range(idx.size(0)):
for j in range(idx.size(1)):
y[i][j][idx[i][j]] = x[i][j][idx[i][j]]
return y
def cauchy_selector(self, sx, cx, cauchy_param=1e-2):
out = t.div(t.pow(t.bmm(sx, cx), 2),
t.bmm(t.sum(t.pow(sx, 2), dim=2).unsqueeze(2), t.sum(t.pow(cx, 2), dim=1).unsqueeze(1)))
out = t.pow(out, exp(cauchy_param))
out -= t.eye(sx.size(1)).unsqueeze(0).repeat((self.batch, 1, 1)).cuda(device)
out = 0.5 - 0.5 * t.cos(pi * out)
# out = t.clip(out, 0, 1)
return out
def complex_selector(self, sx, cx, px):
# (b, d, l)
sx, cx = t.complex(sx, t.zeros_like(sx)), t.complex(cx, t.zeros_like(cx))
out = t.div(t.bmm(sx, cx),
t.bmm(t.sqrt(t.sum(t.pow(sx, 2), dim=2)).unsqueeze(2), t.sqrt(t.sum(t.pow(cx, 2), dim=1)).unsqueeze(1)))
out -= t.eye(sx.size(1)).unsqueeze(0).repeat((sx.size(0), 1, 1)) * (1 + 1.0j)
out = t.exp(t.arccos(pi * out / 2) * 2.0j)
out_real = t.bmm(t.softmax(out.real, dim=2), px)
out_imag = t.bmm(t.softmax(out.imag, dim=2), px)
out = t.cat([out_real, out_imag], dim=1)
return out
def forward(self, x:t.Tensor, last_mask=False):
# batch, dim = x.size(0), x.size(1)
if last_mask is True:
x, mask = x[:, :, :-1], x[:, :, -1:]
dsx = self.lin1(x)
dcx = self.lin2(x)
lsx = self.lin3(x)
lcx = self.lin4(x)
# score, score_idx = t.topk(score, k=1, dim=1) #(b*d, 1, lp)
dscore = t.softmax(F.relu(self.cauchy_selector(dsx, dcx.permute(0, 2, 1))), dim=1) # (b, ls, lp)
lscore = t.softmax(F.relu(self.cauchy_selector(lsx.permute(0, 2, 1), lcx)), dim=2)
# score_x = self.idx_select(x, score_idx) # (b*d, d, ls)
# score = score.reshape(batch, dim, -1)
# score = x * score # (b, d, ls)
y = (t.bmm(t.bmm(dscore, x), lscore) + x) / 2
if last_mask is True:
# score = t.cat([score, mask], -1)
y = t.cat([y, mask], -1) #(b,d,l)
return y
class Regularizer():
def __init__(self, base_add, min_val, max_val):
self.base_add = base_add
self.min_val = min_val
self.max_val = max_val
def __call__(self, entity_embedding):
if entity_embedding is None:
return None
return t.clamp(entity_embedding + self.base_add, self.min_val, self.max_val)
class ProjectionKL(nn.Module):
def __init__(self, vertex_dim, hid_dim):
super(ProjectionKL, self).__init__()
self.vertex_dim = vertex_dim
self.hid_dim = hid_dim
self.layer0 = nn.Linear(vertex_dim, hid_dim).cuda(device)
# self.layer1 = nn.Linear(vertex_dim, hid_dim).cuda(device)
self.layer1 = nn.Linear(hid_dim, vertex_dim).cuda(device)
def _kl_calc(self, alpha, beta):
out = []
if alpha.size(0) < 1:
return alpha
for i in range(alpha.size(0)):
out.append(alpha[i] + t.sum(F.kl_div(alpha[i].unsqueeze(0).sigmoid().log(), beta.sigmoid(), reduction='none'), 0).unsqueeze(0))
out = t.cat(out, 0)
return out
def forward(self, alpha, beta):
a_size = alpha.size(0)
if a_size == 0:
out = self.layer0(beta)
return self.layer1(out)
else:
out = t.cat([alpha, beta], 0)
out = self.layer0(out)
alpha = self._kl_calc(out[a_size:, :], out[:a_size, :])
out = t.cat([alpha, out[:a_size, :]], 0)
out = self.layer1(out)
return out[a_size:, :], out[:a_size, :]
class Intersection(nn.Module):
def __init__(self, vertex_dim, edge_dim, hid_dim, batch_size):
super(Intersection, self).__init__()
self.vertex_dim = vertex_dim
self.batch_size = batch_size
self.hid_dim = hid_dim
self.edge_dim = edge_dim
# self.aggregator = MessagePassing("add", "source_to_target", -2, 1)
self.layer0 = nn.Linear(vertex_dim, hid_dim).cuda(device)
self.w_0 = nn.Linear(edge_dim, hid_dim).cuda(device)
self.layer1 = nn.Linear(hid_dim, vertex_dim).cuda(device)
self.w_1 = nn.Linear(hid_dim, edge_dim).cuda(device)
self.norm = nn.BatchNorm1d(hid_dim).cuda(device)
def _cauchy_selector(self, x):
base = t.sqrt(t.sum(t.pow(x, 2), dim=1).unsqueeze(1))
out = t.div(t.matmul(x, x.permute(1, 0)),
t.matmul(base, base.permute(1, 0))
)
out -= t.eye(out.size(-1)).cuda(device)
return out
# def _adjacency(self, idx: t.Tensor=t.zeros((0,))):
# col, row = idx
# ad_mat = t.zeros((self.batch_size, self.batch_size)).cuda(device)
# ad_mat[row, col] = 1
# ad_mat[col, row] = 1
# return ad_mat
def forward(self, x, edge_index, edge_weight, damping=0.45, path=3):
out = self.layer0(x)
w = self.w_0(edge_weight)
for i in range(self.batch_size):
idx = (edge_index[0] == i).nonzero()
if idx.size(0) == 0:
continue
else:
select_w = w[idx, :]
out[i:i+1, :] += damping * t.sum(select_w, 0)
w[idx, :] += damping * t.sum(out[i, :], 0).unsqueeze(0)
out_ = t.softmax(self._cauchy_selector(out), 1)
out = t.matmul(out_, out)
if w.size(0) > 1:
w = self.norm(w)
return self.layer1(out), self.w_1(w)
class KGComplete(MessagePassing):
def __init__(self, edge_dim, cls_dim, batch_size, vertex_dim=1, hid_dim=256, **kwargs):
kwargs.setdefault('aggr', 'add')
super(KGComplete, self).__init__(**kwargs)
# self.num_vertex = num_vertex
self.edge_dim = edge_dim
self.vertex_dim = vertex_dim
self.hid_dim = hid_dim
self.batch_size = batch_size
self.cls_dim = cls_dim
self._graph_init()
def _graph_init(self):
self.regularizer = Regularizer(1, 5e-2, 1e9)
# self.intersection = BetaIntersection(self.edge_dim).cuda(device)
# self.projection = BetaProjection(self.vertex_dim, self.edge_dim, self.hid_dim, self.regularizer, self.cls_dim).cuda(device)
self.projection = ProjectionKL(self.vertex_dim, self.hid_dim)
self.intersection = Intersection(self.vertex_dim, self.edge_dim, self.hid_dim, self.batch_size)
self.conv = GATv2Conv(self.vertex_dim, self.vertex_dim, dropout=0.3).cuda(device)
self.norm = nn.BatchNorm1d(self.edge_dim)
self.normx = nn.BatchNorm1d(self.vertex_dim)
self.lin1 = nn.Linear(self.edge_dim, self.edge_dim)
self.lin2 = nn.Linear(self.vertex_dim, self.vertex_dim)
self.sagp = SAGPooling(self.vertex_dim, min_score=1e-3, GNN=GCNConv).cuda(device)
self.relu = nn.ReLU()
def _nagetive(self, input):
return t.sigmoid(1./input)
def _adjacency(self, idx: t.Tensor=t.zeros((0,))):
col, row = idx
ad_mat = t.zeros((self.batch_size, self.batch_size)).cuda(device)
ad_mat[row, col] = 1
ad_mat[col, row] = 1
return ad_mat
def _beta_quary_embed(self, data):
rel = {'dup':0, 'rel':1, 'none':2}
alpha = []
beta = []
dup_rel = []
for i in range(self.cls_dim):
if i == 0:
tmpa, tmpb = self.intersection(data[i].x, data[i].edge_index, data[i].edge_weight)
data[i].x+=tmpa
data[i].edge_weight += tmpb
data[i].x = self.relu(data[i].x)
adj = self._adjacency(data[i].edge_index)
idx = (t.sum(adj, 0) < 1).nonzero()
nidx = (t.sum(adj, 1) >= 1).nonzero()
if idx.size(0) > 0:
negative = rel['none']
al, be = self.projection(data[i].x[idx[:, 0]], data[i].x[nidx[:, 0]])
data[negative].x += t.cat([al,be],0)
tmpa,tmpb= self.intersection(self._nagetive(data[negative].x), data[i].edge_index, self._nagetive(data[i].edge_weight))
data[negative].x+=tmpa
data[negative].edge_weight += t.mean(tmpb, 0)
# positive (duplicate)
data[i].x = self.conv(x=data[i].x, edge_index=data[i].edge_index)
x, edge_index, _, batch, perm, score = self.sagp(data[i].x, data[i].edge_index)
data[i].x, data[i].edge_index = x, edge_index
data[i].x = self.relu(data[i].x)
row, col = data[i].edge_index
select_embed = t.cat([row, col], dim=0)
dup_rel.append(select_embed)
embeding = data[i].x[select_embed, :]
a_embeding, b_embeding = t.chunk(embeding, 2, 1)
alpha.append(a_embeding)
beta.append(b_embeding)
# data[0].x, data[0].edge_index, _, batch, perm, score = self.sagp(data[0].x, data[0].edge_index, data[0].edge_weight, None)
elif i == 1:
# offset
data[i].edge_weight = self.lin1(data[i].edge_weight)
if data[i].edge_weight.size(0) > 1:
data[i].edge_weight = self.norm(data[i].edge_weight)
data[i].x = self.lin2(data[i].x)
data[i].x = self.normx(data[i].x)
tmpa, tmpb = self.intersection(data[i].x, data[i].edge_index, data[i].edge_weight)
data[i].x += tmpa
data[i].edge_weight += tmpb
data[i].x = self.relu(data[i].x)
adj = self._adjacency(data[i].edge_index)
idx = (t.sum(adj, 0) < 1).nonzero()
nidx = (t.sum(adj, 1) >= 1).nonzero()
if idx.size(0) > 0:
negative = rel['none']
al, be = self.projection(data[i].x[idx[:, 0]], data[i].x[nidx[:, 0]])
data[i].x += t.cat([al,be],0)
tmpa, tmpb = self.intersection(self._nagetive(data[negative].x), data[i].edge_index, self._nagetive(data[i].edge_weight))
data[negative].x += tmpa
data[negative].edge_weight += t.mean(tmpb, 0)
# positive (relate)
data[i].x = self.conv(x=data[i].x, edge_index=data[i].edge_index)
x, edge_index, _, batch, perm, score = self.sagp(data[i].x, data[i].edge_index)
data[i].x, data[i].edge_index = x, edge_index
data[i].x = self.relu(data[i].x)
row, col = data[i].edge_index
select_embed = t.cat([row, col], dim=0)
dup_rel.append(select_embed)
embeding = data[i].x[select_embed, :]
a_embeding, b_embeding = t.chunk(embeding, 2, 1)
alpha.append(a_embeding)
beta.append(b_embeding)
elif i == 2:
# none
data[i].x = self._nagetive(data[i].x)
tmpa, tmpb = self.intersection(data[i].x, data[i].edge_index, data[i].edge_weight)
data[i].x += tmpa
data[i].edge_weight += tmpb
data[i].x = self.relu(data[i].x)
data[i].x = self.conv(data[i].x, data[i].edge_index)
x, edge_index, _, batch, perm, score = self.sagp(data[i].x, data[i].edge_index)
data[i].x, data[i].edge_index = x, edge_index
data[i].x = self.relu(data[i].x)
idx = []
dup_rel = t.cat(dup_rel, 0)
for it in range(data[i].x.size(0)):
if it not in dup_rel:
idx.append(it)
a_embeding, b_embeding = t.chunk(data[i].x[idx, :], 2, 1)
alpha.append(a_embeding)
beta.append(b_embeding)
return alpha, beta, data
def forward(self, out):
return self._beta_quary_embed(out)
class CalcLoss(nn.Module):
def __init__(self, batch):
super(CalcLoss, self).__init__()
self.l1 = nn.L1Loss(reduction='mean').cuda(device)
self.gamma = t.Tensor([24.]).cuda(device)
nn.Parameter(self.gamma, requires_grad=True)
self.batch_size = batch
def _adjacency(self, idx: t.Tensor=t.zeros((0,))):
if idx.size(1) < 1:
return t.zeros((self.batch_size, self.batch_size)).cuda(device)
col, row = idx
ad_mat = t.zeros((self.batch_size, self.batch_size)).cuda(device)
ad_mat[row, col] = 1
ad_mat[col, row] = 1
return ad_mat
def loss(self, alpha, beta, data, score, mode='train'):
dup_rel = t.cat([
self._adjacency(data[0].edge_index).unsqueeze(-1),
self._adjacency(data[1].edge_index).unsqueeze(-1),
self._adjacency(data[2].edge_index).unsqueeze(-1)
], -1)
dup_rel = (dup_rel.softmax(-1)[:, :, 0:2] > 0.5).float()
a_score = t.cat([
self._adjacency(score[0]).unsqueeze(-1),
self._adjacency(score[1]).unsqueeze(-1)
], -1)
map_loss = self.l1(dup_rel, a_score)
if mode == 'eval':
return map_loss
# logit = t.max(self.cal_logit_beta(alpha, beta))
return map_loss #+ logit
def cal_logit_beta(self, alpha, beta):
logit = 0
if alpha[0].size(0) > 0 and alpha[1].size(0) > 0:
a, b = t.chunk(alpha[0], 2, 0)
c, d = t.chunk(beta[0], 2, 0)
dist_0 = t.distributions.beta.Beta(t.clamp(a, 1e-2, 1e9), t.clamp(c, 1e-2, 1e9))
dist_1 = t.distributions.beta.Beta(t.clamp(b, 1e-2, 1e9), t.clamp(d, 1e-2, 1e9))
# # if alpha[2].size(0) > 0:
# # dist_2 = t.distributions.beta.Beta(t.sum(t.clamp(alpha[2], 1e-2, 1e9), dim=0), t.sum(t.clamp(beta[2], 1e-2, 1e9), dim=0))
# # else:
# # dist_2 = t.distributions.beta.Beta(t.sum(t.clamp(t.cat([alpha[0], alpha[1]], 0), 1e-2, 1e9), 0), t.sum(t.clamp(t.cat([beta[0], beta[1]], 0), 1e-2, 1e9), 0))
logit = t.norm(t.distributions.kl.kl_divergence(dist_0, dist_1), p=1, dim=-1) + self.gamma
# # logit += self.gamma - t.norm(t.distributions.kl.kl_divergence(dist_1, dist_2), p=1, dim=-1)
# # logit += self.gamma - t.norm(t.distributions.kl.kl_divergence(dist_0, dist_2), p=1, dim=-1)
return logit
# def cal_logit_cauthy(self, alpha, beta):
def forward(self, alpha, beta, data, score, mode='train'):
return self.loss(alpha, beta, data, score, mode)
class Model(nn.Module):
def __init__(self, input_len, ques_len, cls_dim, hid_dim=768, g_hid_dim=384, sens_len=512, heads=8):
super(Model, self).__init__()
self.en = Encoder(input_len, ques_len, cls_dim, hid_dim, g_hid_dim, sens_len, heads).cuda(device)
self.kg = KGComplete(g_hid_dim, cls_dim, input_len+ques_len, g_hid_dim, g_hid_dim).cuda(device)
self.logit = CalcLoss(input_len+ques_len).cuda(device)
def forward(self, quary, ques, score, mode='train'):
out, label = self.en(quary, ques)
a, b, data = self.kg(out)
loss = self.logit(a, b, data, score, mode)
return loss
def autograph(self, quary, ques):
out,label = self.en(quary, ques)
return self.kg(out)
import time
if __name__ == "__main__":
model = Model(10, 1, 3, 768, 384, 512, 8)
quary = t.randn((1, 768, 513)).cuda(device) #(b, d, l)
ques = t.randn((10, 768, 513)).cuda(device)
score = [t.randint(0, 10, (2, 24)), t.randint(0, 10, (2, 25))]
st = time.time()
t.autograd.set_detect_anomaly(True)
for i in range(1400):
loss = model(quary, ques, score)
loss.requires_grad_(True)
print(loss)
loss.backward()
print(time.time()-st, "s")
# print(label.size())