diff --git a/quant.py b/quant.py index 34f6a97d..93cd297d 100644 --- a/quant.py +++ b/quant.py @@ -161,7 +161,6 @@ def __init__(self, bits, groupsize, infeatures, outfeatures, bias, faster=True, self.register_buffer('qweight', torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)) self.register_buffer('qzeros', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures // 32 * self.bits), dtype=torch.int32)) self.register_buffer('scales', torch.zeros((math.ceil(infeatures / self.groupsize), outfeatures), dtype=torch.float16)) - self.register_buffer('g_idx', torch.tensor([i // self.groupsize for i in range(infeatures)], dtype = torch.int32)) if bias: self.register_buffer('bias', torch.zeros((outfeatures),dtype=torch.float16)) else: @@ -180,9 +179,7 @@ def __init__(self, bits, groupsize, infeatures, outfeatures, bias, faster=True, self.kernel_switch_threshold = kernel_switch_threshold self.is_cuda = is_cuda - def pack(self, linear, scales, zeros, g_idx = None): - self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx - + def pack(self, linear, scales, zeros): scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales @@ -192,7 +189,8 @@ def pack(self, linear, scales, zeros, g_idx = None): intweight = [] for idx in range(self.infeatures): - intweight.append(torch.round((linear.weight.data[:,idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[:,None]) + g_idx = idx // self.groupsize + intweight.append(torch.round((linear.weight.data[:,idx] + scale_zeros[g_idx]) / self.scales[g_idx]).to(torch.int)[:,None]) intweight = torch.cat(intweight,dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) @@ -302,10 +300,14 @@ def forward(self, x): torch.bitwise_and(zeros, (2 ** self.bits) - 1, out=zeros) zeros = zeros + 1 - zeros = zeros.reshape(self.scales.shape) - + zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) + + scales = self.scales + scales = scales.reshape(-1, 1, scales.shape[-1]) + weight = torch.bitwise_right_shift(torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), self.wf.unsqueeze(-1)).to(torch.int16 if self.bits == 8 else torch.int8) torch.bitwise_and(weight,(2 ** self.bits) - 1, out=weight) + weight = weight.reshape(-1, self.groupsize, weight.shape[2]) elif self.bits == 3: zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1]//3, 3, 1).expand(-1, -1, -1, 12) zeros = (zeros >> self.wf.unsqueeze(0)) @@ -315,7 +317,10 @@ def forward(self, x): zeros = torch.cat([zeros[:,:,0,:11], zeros[:,:,1,1:12], zeros[:,:,2,1:11]], dim=2) zeros = zeros + 1 - zeros = zeros.reshape(self.scales.shape) + zeros = zeros.reshape(-1, 1, zeros.shape[1] * zeros.shape[2]) + + scales = self.scales + scales = scales.reshape(-1, 1, scales.shape[-1]) weight = self.qweight.reshape(self.qweight.shape[0]//3, 3, 1, self.qweight.shape[1]).expand(-1, -1, 12, -1) weight = (weight >> self.wf.unsqueeze(-1))&0x7 @@ -323,11 +328,11 @@ def forward(self, x): weight[:,1,11] = (weight[:,1,11]&0x1) | ((weight[:,2,0] << 1)&0x6) weight = weight & 0x7 weight = torch.cat([weight[:,0,:11], weight[:,1,1:12], weight[:,2,1:11]], dim=1) - + weight = weight.reshape(-1, self.groupsize, weight.shape[2]) + weight = (scales * (weight - zeros)) weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2]) - weights = (self.scales[self.g_idx] * (weight - zeros[self.g_idx])) - out = torch.matmul(x.half(), weights) + out = torch.matmul(x.half(), weight) out = out.reshape(out_shape) out = out + self.bias if self.bias is not None else out return out