-
Notifications
You must be signed in to change notification settings - Fork 461
/
Copy pathtest_kernel.py
187 lines (149 loc) · 5.2 KB
/
test_kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
import torch.nn as nn
import quant_cuda
import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
print('Benchmarking LLaMa-7B FC2 matvec ...')
DEV = torch.device('cuda:0')
B = 5
L = 128
M = 4096
N = 11008
DTYPE = torch.half
mat = torch.randn((M, N), device=DEV, dtype=DTYPE)
vec = torch.randn((B, M), device=DEV, dtype=DTYPE)
mul = torch.zeros((B, N), device=DEV, dtype=DTYPE)
COUNT = 1000
import time
tick = time.time()
for _ in range(COUNT):
torch.matmul(vec, mat, out=mul)
torch.cuda.synchronize()
print('FP16:', (time.time() - tick) / COUNT)
DTYPE = torch.float
mat = mat.to(DTYPE)
vec = vec.to(DTYPE)
mul = mul.to(DTYPE)
mat = torch.randint(-1000000000, 1000000000, (M // 256 * 32, N), device=DEV, dtype=torch.int)
scales = torch.randn(N, device=DEV, dtype=DTYPE)
zeros = torch.randint(-1000000000, 1000000000, (1, N // 256 * 32), device=DEV, dtype=torch.int)
COUNT = 1000
import time
vec = vec.float()
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant2matmul(vec, mat, mul, scales, zeros, M)
torch.cuda.synchronize()
print('2bit:', (time.time() - tick) / COUNT)
vec = vec.half()
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant2matmul_faster(vec, mat, mul, scales, zeros, M, M//2)
torch.cuda.synchronize()
print('2bit:', (time.time() - tick) / COUNT, '(faster)')
vec = vec.float()
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant3matmul(vec, mat, mul, scales, zeros, M)
torch.cuda.synchronize()
print('3bit:', (time.time() - tick) / COUNT)
vec = vec.half()
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant3matmul_faster(vec, mat, mul, scales, zeros, M, M//2)
torch.cuda.synchronize()
print('3bit:', (time.time() - tick) / COUNT, '(faster)')
vec = vec.float()
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant4matmul(vec, mat, mul, scales, zeros, M)
torch.cuda.synchronize()
print('4bit:', (time.time() - tick) / COUNT)
vec = vec.half()
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant4matmul_faster(vec, mat, mul, scales, zeros, M, M//2)
torch.cuda.synchronize()
print('4bit:', (time.time() - tick) / COUNT, '(faster)')
vec = vec.float()
tick = time.time()
for _ in range(COUNT):
quant_cuda.vecquant8matmul(vec, mat, mul, scales, zeros, M)
torch.cuda.synchronize()
print('8bit:', (time.time() - tick) / COUNT)
print('Verifiying kernel correctness ...')
M = 4096
N = 11008
from quant import *
layer = nn.Linear(M, N)
vec = torch.randn(B,L,M).to(DEV)
quantizer = Quantizer()
quantizer.configure(2, perchannel=True, sym=False, mse=False)
quantizer.find_params(layer.weight.data, weight=True)
layer.weight.data = quantize(
layer.weight.data, quantizer.scale, quantizer.zero, quantizer.maxq
)
qlayer = QuantLinear(2, -1, layer.in_features, layer.out_features, bias =True,kernel_switch_threshold = False)
qlayer.pack(layer, quantizer.scale, quantizer.zero)
qlayer = qlayer.to(DEV)
layer = layer.to(DEV)
with torch.no_grad():
print('2bit Simu:', layer.to(DEV)(vec))
print('2bit Kern:', qlayer(vec))
qlayer.faster = True
print('2bit Kern:', qlayer(vec.half()), '(faster)')
print('\n')
layer = nn.Linear(M, N)
vec = torch.randn(B,L,M).to(DEV)
quantizer = Quantizer()
quantizer.configure(3, perchannel=True, sym=False, mse=False)
quantizer.find_params(layer.weight.data, weight=True)
layer.weight.data = quantize(
layer.weight.data, quantizer.scale, quantizer.zero, quantizer.maxq
)
qlayer = QuantLinear(3, -1, layer.in_features, layer.out_features, bias =True, kernel_switch_threshold = False)
qlayer.pack(layer, quantizer.scale, quantizer.zero)
qlayer = qlayer.to(DEV)
layer = layer.to(DEV)
with torch.no_grad():
print('3bit Simu:', layer.to(DEV)(vec))
print('3bit Kern:', qlayer(vec))
qlayer.faster = True
print('3bit Kern:', qlayer(vec.half()), '(faster)')
print('\n')
layer = nn.Linear(M, N)
vec = torch.randn(B,L,M).to(DEV)
quantizer = Quantizer()
quantizer.configure(4, perchannel=True, sym=False, mse=False)
quantizer.find_params(layer.weight.data, weight=True)
layer.weight.data = quantize(
layer.weight.data, quantizer.scale, quantizer.zero, quantizer.maxq
)
qlayer = QuantLinear(4, -1, layer.in_features, layer.out_features, bias =True, kernel_switch_threshold = False)
qlayer.pack(layer, quantizer.scale, quantizer.zero)
qlayer = qlayer.to(DEV)
layer = layer.to(DEV)
with torch.no_grad():
print('4bit Simu:', layer.to(DEV)(vec))
print('4bit Kern:', qlayer(vec))
qlayer.faster = True
print('4bit Kern:', qlayer(vec.half()), '(faster)')
print('\n')
layer = nn.Linear(M, N)
vec = torch.randn(B,L,M).to(DEV)
quantizer = Quantizer()
quantizer.configure(8, perchannel=True, sym=False, mse=False)
quantizer.find_params(layer.weight.data, weight=True)
layer.weight.data = quantize(
layer.weight.data, quantizer.scale, quantizer.zero, quantizer.maxq
)
qlayer = QuantLinear(8, -1, layer.in_features, layer.out_features, bias =True, kernel_switch_threshold = False)
qlayer.pack(layer, quantizer.scale, quantizer.zero)
qlayer = qlayer.to(DEV)
layer = layer.to(DEV)
with torch.no_grad():
print('8bit Simu:', layer.to(DEV)(vec))
print('8bit Kern:', qlayer(vec))
print('\n')