Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bug in documentation of phase_flip and bit_flip methods #5977

Merged
merged 2 commits into from
Jan 8, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 14 additions & 14 deletions cirq-core/cirq/ops/common_channels.py
Original file line number Diff line number Diff line change
Expand Up @@ -1010,15 +1010,15 @@ def _phase_flip(p: float) -> PhaseFlipChannel:

$$
\begin{aligned}
M_0 =& \sqrt{p} \begin{bmatrix}
M_0 =& \sqrt{1 - p} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\end{bmatrix}
\\
M_1 =& \sqrt{1-p} \begin{bmatrix}
M_1 =& \sqrt{p} \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\end{bmatrix}
\end{aligned}
$$

Expand Down Expand Up @@ -1046,15 +1046,15 @@ def phase_flip(p: Optional[float] = None) -> Union[common_gates.ZPowGate, PhaseF

$$
\begin{aligned}
M_0 =& \sqrt{p} \begin{bmatrix}
M_0 =& \sqrt{1 - p} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\end{bmatrix}
\\
M_1 =& \sqrt{1-p} \begin{bmatrix}
M_1 =& \sqrt{p} \begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\end{bmatrix}
\end{aligned}
$$

Expand Down Expand Up @@ -1162,14 +1162,14 @@ def _bit_flip(p: float) -> BitFlipChannel:

$$
\begin{aligned}
M_0 =& \sqrt{p} \begin{bmatrix}
M_0 =& \sqrt{1-p} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\\
M_1 =& \sqrt{1-p} \begin{bmatrix}
M_1 =& \sqrt{p} \begin{bmatrix}
0 & 1 \\
1 & -0
1 & 0
\end{bmatrix}
\end{aligned}
$$
Expand Down Expand Up @@ -1198,14 +1198,14 @@ def bit_flip(p: Optional[float] = None) -> Union[common_gates.XPowGate, BitFlipC

$$
\begin{aligned}
M_0 =& \sqrt{p} \begin{bmatrix}
M_0 =& \sqrt{1-p} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\\
M_1 =& \sqrt{1-p} \begin{bmatrix}
M_1 =& \sqrt{p} \begin{bmatrix}
0 & 1 \\
1 & -0
1 & 0
\end{bmatrix}
\end{aligned}
$$
Expand Down