Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bottleneck training added #95

Merged
merged 2 commits into from
Jun 10, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@

A Keras implementation of YOLOv3 (Tensorflow backend) inspired by [allanzelener/YAD2K](https://github.com/allanzelener/YAD2K).


---

## Quick Start
Expand Down Expand Up @@ -70,3 +71,5 @@ If you want to use original pretrained weights for YOLOv3:
5. Always load pretrained weights and freeze layers in the first stage of training. Or try Darknet training. It's OK if there is a mismatch warning.

6. The training strategy is for reference only. Adjust it according to your dataset and your goal. And add further strategy if needed.

7. For speeding up the training process with frozen layers train_bottleneck.py can be used. It will compute the bottleneck features of the frozen model first and then only trains the last layers. This makes training on CPU possible in a reasonable time. See [this](https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html) for more information on bottleneck features.
222 changes: 222 additions & 0 deletions train_bottleneck.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
"""
Retrain the YOLO model for your own dataset.
"""
import os
import numpy as np
import keras.backend as K
from keras.layers import Input, Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping

from yolo3.model import preprocess_true_boxes, yolo_body, tiny_yolo_body, yolo_loss
from yolo3.utils import get_random_data


def _main():
annotation_path = 'train.txt'
log_dir = 'logs/000/'
classes_path = 'model_data/coco_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
class_names = get_classes(classes_path)
num_classes = len(class_names)
anchors = get_anchors(anchors_path)

input_shape = (416,416) # multiple of 32, hw

model, bottleneck_model, last_layer_model = create_model(input_shape, anchors, num_classes,
freeze_body=2, weights_path='model_data/yolo_weights.h5') # make sure you know what you freeze

logging = TensorBoard(log_dir=log_dir)
checkpoint = ModelCheckpoint(log_dir + 'ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5',
monitor='val_loss', save_weights_only=True, save_best_only=True, period=3)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=3, verbose=1)
early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=10, verbose=1)

val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val

# Train with frozen layers first, to get a stable loss.
# Adjust num epochs to your dataset. This step is enough to obtain a not bad model.
if True:
# perform bottleneck training
if not os.path.isfile("bottlenecks.npz"):
print("calculating bottlenecks")
batch_size=8
bottlenecks=bottleneck_model.predict_generator(data_generator_wrapper(lines, batch_size, input_shape, anchors, num_classes, random=False, verbose=True),
steps=(len(lines)//batch_size)+1, max_queue_size=1)
np.savez("bottlenecks.npz", bot0=bottlenecks[0], bot1=bottlenecks[1], bot2=bottlenecks[2])

# load bottleneck features from file
dict_bot=np.load("bottlenecks.npz")
bottlenecks_train=[dict_bot["bot0"][:num_train], dict_bot["bot1"][:num_train], dict_bot["bot2"][:num_train]]
bottlenecks_val=[dict_bot["bot0"][num_train:], dict_bot["bot1"][num_train:], dict_bot["bot2"][num_train:]]

# train last layers with fixed bottleneck features
batch_size=8
print("Training last layers with bottleneck features")
print('with {} samples, val on {} samples and batch size {}.'.format(num_train, num_val, batch_size))
last_layer_model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred})
last_layer_model.fit_generator(bottleneck_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, bottlenecks_train),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=bottleneck_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, bottlenecks_val),
validation_steps=max(1, num_val//batch_size),
epochs=30,
initial_epoch=0, max_queue_size=1)
model.save_weights(log_dir + 'trained_weights_stage_0.h5')

# train last layers with random augmented data
model.compile(optimizer=Adam(lr=1e-3), loss={
# use custom yolo_loss Lambda layer.
'yolo_loss': lambda y_true, y_pred: y_pred})
batch_size = 16
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=50,
initial_epoch=0,
callbacks=[logging, checkpoint])
model.save_weights(log_dir + 'trained_weights_stage_1.h5')

# Unfreeze and continue training, to fine-tune.
# Train longer if the result is not good.
if True:
for i in range(len(model.layers)):
model.layers[i].trainable = True
model.compile(optimizer=Adam(lr=1e-4), loss={'yolo_loss': lambda y_true, y_pred: y_pred}) # recompile to apply the change
print('Unfreeze all of the layers.')

batch_size = 4 # note that more GPU memory is required after unfreezing the body
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
model.fit_generator(data_generator_wrapper(lines[:num_train], batch_size, input_shape, anchors, num_classes),
steps_per_epoch=max(1, num_train//batch_size),
validation_data=data_generator_wrapper(lines[num_train:], batch_size, input_shape, anchors, num_classes),
validation_steps=max(1, num_val//batch_size),
epochs=100,
initial_epoch=50,
callbacks=[logging, checkpoint, reduce_lr, early_stopping])
model.save_weights(log_dir + 'trained_weights_final.h5')

# Further training if needed.


def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names

def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)


def create_model(input_shape, anchors, num_classes, load_pretrained=True, freeze_body=2,
weights_path='model_data/yolo_weights.h5'):
'''create the training model'''
K.clear_session() # get a new session
image_input = Input(shape=(None, None, 3))
h, w = input_shape
num_anchors = len(anchors)

y_true = [Input(shape=(h//{0:32, 1:16, 2:8}[l], w//{0:32, 1:16, 2:8}[l], \
num_anchors//3, num_classes+5)) for l in range(3)]

model_body = yolo_body(image_input, num_anchors//3, num_classes)
print('Create YOLOv3 model with {} anchors and {} classes.'.format(num_anchors, num_classes))

if load_pretrained:
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
print('Load weights {}.'.format(weights_path))
if freeze_body in [1, 2]:
# Freeze darknet53 body or freeze all but 3 output layers.
num = (185, len(model_body.layers)-3)[freeze_body-1]
for i in range(num): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(num, len(model_body.layers)))

# get output of second last layers and create bottleneck model of it
out1=model_body.layers[246].output
out2=model_body.layers[247].output
out3=model_body.layers[248].output
bottleneck_model = Model([model_body.input, *y_true], [out1, out2, out3])

# create last layer model of last layers from yolo model
in0 = Input(shape=bottleneck_model.output[0].shape[1:].as_list())
in1 = Input(shape=bottleneck_model.output[1].shape[1:].as_list())
in2 = Input(shape=bottleneck_model.output[2].shape[1:].as_list())
last_out0=model_body.layers[249](in0)
last_out1=model_body.layers[250](in1)
last_out2=model_body.layers[251](in2)
model_last=Model(inputs=[in0, in1, in2], outputs=[last_out0, last_out1, last_out2])
model_loss_last =Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_last.output, *y_true])
last_layer_model = Model([in0,in1,in2, *y_true], model_loss_last)


model_loss = Lambda(yolo_loss, output_shape=(1,), name='yolo_loss',
arguments={'anchors': anchors, 'num_classes': num_classes, 'ignore_thresh': 0.5})(
[*model_body.output, *y_true])
model = Model([model_body.input, *y_true], model_loss)

return model, bottleneck_model, last_layer_model

def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
'''data generator for fit_generator'''
n = len(annotation_lines)
i = 0
while True:
image_data = []
box_data = []
for b in range(batch_size):
if i==0 and random:
np.random.shuffle(annotation_lines)
image, box = get_random_data(annotation_lines[i], input_shape, random=random)
image_data.append(image)
box_data.append(box)
i = (i+1) % n
image_data = np.array(image_data)
if verbose:
print("Progress: ",i,"/",n)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield [image_data, *y_true], np.zeros(batch_size)

def data_generator_wrapper(annotation_lines, batch_size, input_shape, anchors, num_classes, random=True, verbose=False):
n = len(annotation_lines)
if n==0 or batch_size<=0: return None
return data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, random, verbose)

def bottleneck_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, bottlenecks):
n = len(annotation_lines)
i = 0
while True:
box_data = []
b0=np.zeros((batch_size,bottlenecks[0].shape[1],bottlenecks[0].shape[2],bottlenecks[0].shape[3]))
b1=np.zeros((batch_size,bottlenecks[1].shape[1],bottlenecks[1].shape[2],bottlenecks[1].shape[3]))
b2=np.zeros((batch_size,bottlenecks[2].shape[1],bottlenecks[2].shape[2],bottlenecks[2].shape[3]))
for b in range(batch_size):
_, box = get_random_data(annotation_lines[i], input_shape, random=False, proc_img=False)
box_data.append(box)
b0[b]=bottlenecks[0][i]
b1[b]=bottlenecks[1][i]
b2[b]=bottlenecks[2][i]
i = (i+1) % n
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield [b0, b1, b2, *y_true], np.zeros(batch_size)

if __name__ == '__main__':
_main()
12 changes: 7 additions & 5 deletions yolo3/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ def letterbox_image(image, size):
def rand(a=0, b=1):
return np.random.rand()*(b-a) + a

def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5):
def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jitter=.3, hue=.1, sat=1.5, val=1.5, proc_img=True):
'''random preprocessing for real-time data augmentation'''
line = annotation_line.split()
image = Image.open(line[0])
Expand All @@ -48,10 +48,12 @@ def get_random_data(annotation_line, input_shape, random=True, max_boxes=20, jit
nh = int(ih*scale)
dx = (w-nw)//2
dy = (h-nh)//2
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image)/255.
image_data=0
if proc_img:
image = image.resize((nw,nh), Image.BICUBIC)
new_image = Image.new('RGB', (w,h), (128,128,128))
new_image.paste(image, (dx, dy))
image_data = np.array(new_image)/255.

# correct boxes
box_data = np.zeros((max_boxes,5))
Expand Down