Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RP2040 emulated EEPROM. #17519

Merged
merged 5 commits into from
Jul 2, 2022
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Docs, cleanup, standardisation.
  • Loading branch information
tzarc committed Jul 2, 2022
commit 612695c24e4eb1e74cc7b13af65650ef94fca9be
17 changes: 16 additions & 1 deletion docs/eeprom_driver.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,6 +92,7 @@ Driver | Description
----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
`WEAR_LEVELING_DRIVER = embedded_flash` | This driver is used for emulating EEPROM by writing to embedded flash on the MCU.
`WEAR_LEVELING_DRIVER = spi_flash` | This driver is used to address external SPI NOR Flash peripherals.
`WEAR_LEVELING_DRIVER = rp2040_flash` | This driver is used to write to the same storage the RP2040 executes code from.
`WEAR_LEVELING_DRIVER = legacy` | This driver is the "legacy" emulated EEPROM provided in historical revisions of QMK. Currently used for STM32F0xx and STM32F4x1, but slated for deprecation and removal once `embedded_flash` support for those MCU families is complete.

!> All wear-leveling drivers require an amount of RAM equivalent to the selected logical EEPROM size. Increasing the size to 32kB of EEPROM requires 32kB of RAM, which a significant number of MCUs simply do not have.
Expand Down Expand Up @@ -128,6 +129,20 @@ Configurable options in your keyboard's `config.h`:

!> There is currently a limit of 64kB for the EEPROM subsystem within QMK, so using a larger flash is not going to be beneficial as the logical size cannot be increased beyond 65536. The backing size may be increased to a larger value, but erase timing may suffer as a result.

## Wear-leveling RP2040 Driver Configuration :id=wear_leveling-rp2040-driver-configuration

This driver performs writes to the same underlying storage that the RP2040 executes its code.

Configurable options in your keyboard's `config.h`:

`config.h` override | Default | Description
------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------
`#define WEAR_LEVELING_RP2040_FLASH_SIZE` | `PICO_FLASH_SIZE_BYTES` | Number of bytes of flash on the board.
`#define WEAR_LEVELING_RP2040_FLASH_BASE` | `(flash_size-sector_size)` | The byte-wise location that the backing storage should be located.
`#define WEAR_LEVELING_LOGICAL_SIZE` | `4096` | Number of bytes "exposed" to the rest of QMK and denotes the size of the usable EEPROM.
`#define WEAR_LEVELING_BACKING_SIZE` | `8192` | Number of bytes used by the wear-leveling algorithm for its underlying storage, and needs to be a multiple of the logical size as well as the sector size.
`#define BACKING_STORE_WRITE_SIZE` | `2` | The write width used whenever a write is performed on the external flash peripheral.

## Wear-leveling Legacy EEPROM Emulation Driver Configuration :id=wear_leveling-legacy-driver-configuration

This driver performs writes to the embedded flash storage embedded in the MCU much like the normal Embedded Flash Driver, and is only for use with STM32F0xx and STM32F4x1 devices. This flash implementation is still currently provided as the EFL driver is currently non-functional for the previously mentioned families.
Expand All @@ -142,4 +157,4 @@ STM32F072 | `1024` bytes | `2048` bytes
STM32F401 | `1024` bytes | `16384` bytes
STM32F411 | `1024` bytes | `16384` bytes

Under normal circumstances configuration of this driver requires intimate knowledge of the MCU's flash structure -- reconfiguration is at your own risk and will require referring to the code.
Under normal circumstances configuration of this driver requires intimate knowledge of the MCU's flash structure -- reconfiguration is at your own risk and will require referring to the code.
Original file line number Diff line number Diff line change
Expand Up @@ -125,17 +125,17 @@ static void __no_inline_not_in_flash_func(flash_enable_write)(void) {
_flash_do_cmd(FLASHCMD_WRITE_ENABLE, NULL, NULL, 0);
}

static void __no_inline_not_in_flash_func(pico_program_bulk)(uint32_t flash_address, uint16_t *values, size_t item_count) {
static void __no_inline_not_in_flash_func(pico_program_bulk)(uint32_t flash_address, backing_store_int_t *values, size_t item_count) {
rom_connect_internal_flash_fn connect_internal_flash = (rom_connect_internal_flash_fn)rom_func_lookup_inline(ROM_FUNC_CONNECT_INTERNAL_FLASH);
rom_flash_exit_xip_fn flash_exit_xip = (rom_flash_exit_xip_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_EXIT_XIP);
rom_flash_flush_cache_fn flash_flush_cache = (rom_flash_flush_cache_fn)rom_func_lookup_inline(ROM_FUNC_FLASH_FLUSH_CACHE);
assert(connect_internal_flash && flash_exit_xip && flash_flush_cache);

static uint16_t bulk_write_buffer[WEAR_LEVELING_RP2040_FLASH_BULK_COUNT];
static backing_store_int_t bulk_write_buffer[WEAR_LEVELING_RP2040_FLASH_BULK_COUNT];

while (item_count) {
size_t batch_size = MIN(item_count, WEAR_LEVELING_RP2040_FLASH_BULK_COUNT);
for (int i = 0; i < batch_size; i++, values++, item_count--) {
for (size_t i = 0; i < batch_size; i++, values++, item_count--) {
bulk_write_buffer[i] = ~(*values);
}
__compiler_memory_barrier();
Expand Down Expand Up @@ -176,7 +176,8 @@ bool backing_store_erase(void) {
uint32_t start = timer_read32();
#endif

_Static_assert(WEAR_LEVELING_BACKING_SIZE % 4096 == 0, "Backing size must be a multiple of 4096");
// Ensure the backing size can be cleanly subtracted from the flash size without alignment issues.
_Static_assert((WEAR_LEVELING_BACKING_SIZE) % (FLASH_SECTOR_SIZE) == 0, "Backing size must be a multiple of FLASH_SECTOR_SIZE");

interrupts = save_and_disable_interrupts();
flash_range_erase((WEAR_LEVELING_RP2040_FLASH_BASE), (WEAR_LEVELING_BACKING_SIZE));
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,5 +28,5 @@

// Define the location of emulated EEPROM
#ifndef WEAR_LEVELING_RP2040_FLASH_BASE
# define WEAR_LEVELING_RP2040_FLASH_BASE ((WEAR_LEVELING_RP2040_FLASH_SIZE) - ((((WEAR_LEVELING_BACKING_SIZE) + (FLASH_SECTOR_SIZE)-1) / (FLASH_SECTOR_SIZE)) * (FLASH_SECTOR_SIZE)))
# define WEAR_LEVELING_RP2040_FLASH_BASE ((WEAR_LEVELING_RP2040_FLASH_SIZE) - (WEAR_LEVELING_BACKING_SIZE))
#endif