-
Notifications
You must be signed in to change notification settings - Fork 7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
66183f5
commit c1fdfa6
Showing
3 changed files
with
118 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
from __future__ import print_function | ||
import torch.utils.data as data | ||
from PIL import Image | ||
import os | ||
import os.path | ||
import errno | ||
import numpy as np | ||
import sys | ||
from .cifar import CIFAR10 | ||
|
||
|
||
class STL10(CIFAR10): | ||
base_folder = 'stl10_binary' | ||
url = "http://ai.stanford.edu/~acoates/stl10/stl10_binary.tar.gz" | ||
filename = "stl10_binary.tar.gz" | ||
tgz_md5 = '91f7769df0f17e558f3565bffb0c7dfb' | ||
class_names_file = 'class_names.txt' | ||
train_list = [ | ||
['train_X.bin', '918c2871b30a85fa023e0c44e0bee87f'], | ||
['train_y.bin', '5a34089d4802c674881badbb80307741'], | ||
['unlabeled_X.bin', '5242ba1fed5e4be9e1e742405eb56ca4'] | ||
] | ||
|
||
test_list = [ | ||
['test_X.bin', '7f263ba9f9e0b06b93213547f721ac82'], | ||
['test_y.bin', '36f9794fa4beb8a2c72628de14fa638e'] | ||
] | ||
|
||
def __init__(self, root, split='train', transform=None, target_transform=None, download=False): | ||
self.root = root | ||
self.transform = transform | ||
self.target_transform = target_transform | ||
self.split = split # train/test/unlabeled set | ||
|
||
if download: | ||
self.download() | ||
|
||
if not self._check_integrity(): | ||
raise RuntimeError( | ||
'Dataset not found or corrupted. You can use download=True to download it') | ||
|
||
# now load the picked numpy arrays | ||
if self.split == 'train': | ||
self.data, self.labels = self.__loadfile( | ||
self.train_list[0][0], self.train_list[1][0]) | ||
elif self.split == 'train+unlabeled': | ||
self.data, self.labels = self.__loadfile( | ||
self.train_list[0][0], self.train_list[1][0]) | ||
unlabeled_data, _ = self.__loadfile(self.train_list[2][0]) | ||
self.data = np.concatenate((self.data, unlabeled_data)) | ||
self.labels = np.concatenate( | ||
(self.labels, np.asarray([-1] * unlabeled_data.shape[0]))) | ||
|
||
elif self.split == 'unlabeled': | ||
self.data, _ = self.__loadfile(self.train_list[2][0]) | ||
self.labels = None | ||
else: # self.split == 'test': | ||
self.data, self.labels = self.__loadfile( | ||
self.test_list[0][0], self.test_list[1][0]) | ||
|
||
class_file = os.path.join( | ||
root, self.base_folder, self.class_names_file) | ||
if os.path.isfile(class_file): | ||
with open(class_file) as f: | ||
self.classes = f.read().splitlines() | ||
|
||
def __getitem__(self, index): | ||
if self.labels is not None: | ||
img, target = self.data[index], int(self.labels[index]) | ||
else: | ||
img, target = self.data[index], None | ||
|
||
# doing this so that it is consistent with all other datasets | ||
# to return a PIL Image | ||
img = Image.fromarray(np.transpose(img, (1, 2, 0))) | ||
|
||
if self.transform is not None: | ||
img = self.transform(img) | ||
|
||
if self.target_transform is not None: | ||
target = self.target_transform(target) | ||
|
||
return img, target | ||
|
||
def __len__(self): | ||
return self.data.shape[0] | ||
|
||
def __loadfile(self, data_file, labels_file=None): | ||
labels = None | ||
if labels_file: | ||
path_to_labels = os.path.join( | ||
self.root, self.base_folder, labels_file) | ||
with open(path_to_labels, 'rb') as f: | ||
labels = np.fromfile(f, dtype=np.uint8) - 1 # 0-based | ||
|
||
path_to_data = os.path.join(self.root, self.base_folder, data_file) | ||
with open(path_to_data, 'rb') as f: | ||
# read whole file in uint8 chunks | ||
everything = np.fromfile(f, dtype=np.uint8) | ||
images = np.reshape(everything, (-1, 3, 96, 96)) | ||
images = np.transpose(images, (0, 1, 3, 2)) | ||
|
||
return images, labels |