-
Notifications
You must be signed in to change notification settings - Fork 7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
124 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
from __future__ import print_function | ||
import torch.utils.data as data | ||
from PIL import Image | ||
import os | ||
import os.path | ||
import errno | ||
import numpy as np | ||
import sys | ||
|
||
|
||
class SVHN(data.Dataset): | ||
url = "" | ||
filename = "" | ||
file_md5 = "" | ||
|
||
split_list = { | ||
'train': ["http://ufldl.stanford.edu/housenumbers/train_32x32.mat", | ||
"train_32x32.mat", "e26dedcc434d2e4c54c9b2d4a06d8373"], | ||
'test': ["http://ufldl.stanford.edu/housenumbers/test_32x32.mat", | ||
"test_32x32.mat", "eb5a983be6a315427106f1b164d9cef3"], | ||
'extra': ["http://ufldl.stanford.edu/housenumbers/extra_32x32.mat", | ||
"extra_32x32.mat", "a93ce644f1a588dc4d68dda5feec44a7"]} | ||
|
||
def __init__(self, root, split='train', transform=None, target_transform=None, download=False): | ||
self.root = root | ||
self.transform = transform | ||
self.target_transform = target_transform | ||
self.split = split # training set or test set or extra set | ||
|
||
if self.split not in self.split_list: | ||
raise ValueError('Wrong split entered! Please use split="train" or split="extra" or split="test"') | ||
|
||
self.url = self.split_list[split][0] | ||
self.filename = self.split_list[split][1] | ||
self.file_md5 = self.split_list[split][2] | ||
|
||
if download: | ||
self.download() | ||
|
||
if not self._check_integrity(): | ||
raise RuntimeError('Dataset not found or corrupted.' + | ||
' You can use download=True to download it') | ||
|
||
# import here rather than at top of file because this is | ||
# an optional dependency for torchvision | ||
import scipy.io as sio | ||
|
||
# reading(loading) mat file as array | ||
loaded_mat = sio.loadmat(os.path.join(root, self.filename)) | ||
|
||
self.data = loaded_mat['X'] | ||
self.labels = loaded_mat['y'] | ||
self.data = np.transpose(self.data, (3, 2, 0, 1)) | ||
|
||
def __getitem__(self, index): | ||
img, target = self.data[index], self.labels[index] | ||
|
||
# doing this so that it is consistent with all other datasets | ||
# to return a PIL Image | ||
img = Image.fromarray(np.transpose(img, (1, 2, 0))) | ||
|
||
if self.transform is not None: | ||
img = self.transform(img) | ||
|
||
if self.target_transform is not None: | ||
target = self.target_transform(target) | ||
|
||
return img, target | ||
|
||
def __len__(self): | ||
return len(self.data) | ||
|
||
def _check_integrity(self): | ||
import hashlib | ||
root = self.root | ||
md5 = self.split_list[self.split][2] | ||
fpath = os.path.join(root, self.filename) | ||
if not os.path.isfile(fpath): | ||
return False | ||
md5c = hashlib.md5(open(fpath, 'rb').read()).hexdigest() | ||
if md5c != md5: | ||
return False | ||
return True | ||
|
||
def download(self): | ||
from six.moves import urllib | ||
import tarfile | ||
import hashlib | ||
|
||
root = self.root | ||
fpath = os.path.join(root, self.filename) | ||
|
||
try: | ||
os.makedirs(root) | ||
except OSError as e: | ||
if e.errno == errno.EEXIST: | ||
pass | ||
else: | ||
raise | ||
|
||
if self._check_integrity(): | ||
print('Files already downloaded and verified') | ||
return | ||
|
||
# downloads file | ||
if os.path.isfile(fpath): | ||
print('Using downloaded file: ' + fpath) | ||
else: | ||
print('Downloading ' + self.url + ' to ' + fpath) | ||
urllib.request.urlretrieve(self.url, fpath) | ||
print ('Downloaded!') |