Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] SAC compatibility with composite distributions. #2447

Merged
merged 8 commits into from
Oct 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
150 changes: 118 additions & 32 deletions test/test_cost.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@
from mocking_classes import ContinuousActionConvMockEnv

# from torchrl.data.postprocs.utils import expand_as_right
from tensordict import assert_allclose_td, TensorDict
from tensordict import assert_allclose_td, TensorDict, TensorDictBase
from tensordict.nn import NormalParamExtractor, TensorDictModule
from tensordict.nn.utils import Buffer
from tensordict.utils import unravel_key
Expand Down Expand Up @@ -3450,21 +3450,40 @@ def _create_mock_actor(
device="cpu",
observation_key="observation",
action_key="action",
composite_action_dist=False,
):
# Actor
action_spec = Bounded(
-torch.ones(action_dim), torch.ones(action_dim), (action_dim,)
)
if composite_action_dist:
action_spec = Composite({action_key: {"action1": action_spec}})
net = nn.Sequential(nn.Linear(obs_dim, 2 * action_dim), NormalParamExtractor())
if composite_action_dist:
distribution_class = functools.partial(
CompositeDistribution,
distribution_map={
"action1": TanhNormal,
},
aggregate_probabilities=True,
)
module_out_keys = [
("params", "action1", "loc"),
("params", "action1", "scale"),
]
actor_in_keys = ["params"]
else:
distribution_class = TanhNormal
module_out_keys = actor_in_keys = ["loc", "scale"]
module = TensorDictModule(
net, in_keys=[observation_key], out_keys=["loc", "scale"]
net, in_keys=[observation_key], out_keys=module_out_keys
)
actor = ProbabilisticActor(
module=module,
in_keys=["loc", "scale"],
spec=action_spec,
distribution_class=TanhNormal,
distribution_class=distribution_class,
in_keys=actor_in_keys,
out_keys=[action_key],
spec=action_spec,
)
return actor.to(device)

Expand All @@ -3484,6 +3503,8 @@ def __init__(self):
self.linear = nn.Linear(obs_dim + action_dim, 1)

def forward(self, obs, act):
if isinstance(act, TensorDictBase):
act = act.get("action1")
return self.linear(torch.cat([obs, act], -1))

module = ValueClass()
Expand Down Expand Up @@ -3512,8 +3533,26 @@ def _create_mock_value(
return value.to(device)

def _create_mock_common_layer_setup(
self, n_obs=3, n_act=4, ncells=4, batch=2, n_hidden=2
self,
n_obs=3,
n_act=4,
ncells=4,
batch=2,
n_hidden=2,
composite_action_dist=False,
):
class QValueClass(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(n_hidden + n_act, n_hidden)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(n_hidden, 1)

def forward(self, obs, act):
if isinstance(act, TensorDictBase):
act = act.get("action1")
return self.linear2(self.relu(self.linear1(torch.cat([obs, act], -1))))

common = MLP(
num_cells=ncells,
in_features=n_obs,
Expand All @@ -3526,17 +3565,13 @@ def _create_mock_common_layer_setup(
depth=1,
out_features=2 * n_act,
)
qvalue = MLP(
in_features=n_hidden + n_act,
num_cells=ncells,
depth=1,
out_features=1,
)
qvalue = QValueClass()
batch = [batch]
action = torch.randn(*batch, n_act)
td = TensorDict(
{
"obs": torch.randn(*batch, n_obs),
"action": torch.randn(*batch, n_act),
"action": {"action1": action} if composite_action_dist else action,
"done": torch.zeros(*batch, 1, dtype=torch.bool),
"terminated": torch.zeros(*batch, 1, dtype=torch.bool),
"next": {
Expand All @@ -3549,14 +3584,30 @@ def _create_mock_common_layer_setup(
batch,
)
common = Mod(common, in_keys=["obs"], out_keys=["hidden"])
if composite_action_dist:
distribution_class = functools.partial(
CompositeDistribution,
distribution_map={
"action1": TanhNormal,
},
aggregate_probabilities=True,
)
module_out_keys = [
("params", "action1", "loc"),
("params", "action1", "scale"),
]
actor_in_keys = ["params"]
else:
distribution_class = TanhNormal
module_out_keys = actor_in_keys = ["loc", "scale"]
actor = ProbSeq(
common,
Mod(actor_net, in_keys=["hidden"], out_keys=["param"]),
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=["loc", "scale"]),
Mod(NormalParamExtractor(), in_keys=["param"], out_keys=module_out_keys),
ProbMod(
in_keys=["loc", "scale"],
in_keys=actor_in_keys,
out_keys=["action"],
distribution_class=TanhNormal,
distribution_class=distribution_class,
),
)
qvalue_head = Mod(
Expand All @@ -3582,6 +3633,7 @@ def _create_mock_data_sac(
done_key="done",
terminated_key="terminated",
reward_key="reward",
composite_action_dist=False,
):
# create a tensordict
obs = torch.randn(batch, obs_dim, device=device)
Expand All @@ -3603,14 +3655,21 @@ def _create_mock_data_sac(
terminated_key: terminated,
reward_key: reward,
},
action_key: action,
action_key: {"action1": action} if composite_action_dist else action,
},
device=device,
)
return td

def _create_seq_mock_data_sac(
self, batch=8, T=4, obs_dim=3, action_dim=4, atoms=None, device="cpu"
self,
batch=8,
T=4,
obs_dim=3,
action_dim=4,
atoms=None,
device="cpu",
composite_action_dist=False,
):
# create a tensordict
total_obs = torch.randn(batch, T + 1, obs_dim, device=device)
Expand All @@ -3626,6 +3685,7 @@ def _create_seq_mock_data_sac(
done = torch.zeros(batch, T, 1, dtype=torch.bool, device=device)
terminated = torch.zeros(batch, T, 1, dtype=torch.bool, device=device)
mask = torch.ones(batch, T, dtype=torch.bool, device=device)
action = action.masked_fill_(~mask.unsqueeze(-1), 0.0)
td = TensorDict(
batch_size=(batch, T),
source={
Expand All @@ -3637,7 +3697,7 @@ def _create_seq_mock_data_sac(
"reward": reward.masked_fill_(~mask.unsqueeze(-1), 0.0),
},
"collector": {"mask": mask},
"action": action.masked_fill_(~mask.unsqueeze(-1), 0.0),
"action": {"action1": action} if composite_action_dist else action,
},
names=[None, "time"],
device=device,
Expand All @@ -3650,6 +3710,7 @@ def _create_seq_mock_data_sac(
@pytest.mark.parametrize("num_qvalue", [1, 2, 4, 8])
@pytest.mark.parametrize("device", get_default_devices())
@pytest.mark.parametrize("td_est", list(ValueEstimators) + [None])
@pytest.mark.parametrize("composite_action_dist", [True, False])
def test_sac(
self,
delay_value,
Expand All @@ -3659,14 +3720,19 @@ def test_sac(
device,
version,
td_est,
composite_action_dist,
):
if (delay_actor or delay_qvalue) and not delay_value:
pytest.skip("incompatible config")

torch.manual_seed(self.seed)
td = self._create_mock_data_sac(device=device)
td = self._create_mock_data_sac(
device=device, composite_action_dist=composite_action_dist
)

actor = self._create_mock_actor(device=device)
actor = self._create_mock_actor(
device=device, composite_action_dist=composite_action_dist
)
qvalue = self._create_mock_qvalue(device=device)
if version == 1:
value = self._create_mock_value(device=device)
Expand Down Expand Up @@ -3816,6 +3882,7 @@ def test_sac(
@pytest.mark.parametrize("delay_qvalue", (True, False))
@pytest.mark.parametrize("num_qvalue", [2])
@pytest.mark.parametrize("device", get_default_devices())
@pytest.mark.parametrize("composite_action_dist", [True, False])
def test_sac_state_dict(
self,
delay_value,
Expand All @@ -3824,13 +3891,16 @@ def test_sac_state_dict(
num_qvalue,
device,
version,
composite_action_dist,
):
if (delay_actor or delay_qvalue) and not delay_value:
pytest.skip("incompatible config")

torch.manual_seed(self.seed)

actor = self._create_mock_actor(device=device)
actor = self._create_mock_actor(
device=device, composite_action_dist=composite_action_dist
)
qvalue = self._create_mock_qvalue(device=device)
if version == 1:
value = self._create_mock_value(device=device)
Expand Down Expand Up @@ -3866,15 +3936,19 @@ def test_sac_state_dict(

@pytest.mark.parametrize("device", get_default_devices())
@pytest.mark.parametrize("separate_losses", [False, True])
@pytest.mark.parametrize("composite_action_dist", [True, False])
def test_sac_separate_losses(
self,
device,
separate_losses,
version,
composite_action_dist,
n_act=4,
):
torch.manual_seed(self.seed)
actor, qvalue, common, td = self._create_mock_common_layer_setup(n_act=n_act)
actor, qvalue, common, td = self._create_mock_common_layer_setup(
n_act=n_act, composite_action_dist=composite_action_dist
)

loss_fn = SACLoss(
actor_network=actor,
Expand Down Expand Up @@ -3960,6 +4034,7 @@ def test_sac_separate_losses(
@pytest.mark.parametrize("delay_qvalue", (True, False))
@pytest.mark.parametrize("num_qvalue", [1, 2, 4, 8])
@pytest.mark.parametrize("device", get_default_devices())
@pytest.mark.parametrize("composite_action_dist", [True, False])
def test_sac_batcher(
self,
n,
Expand All @@ -3969,13 +4044,18 @@ def test_sac_batcher(
num_qvalue,
device,
version,
composite_action_dist,
):
if (delay_actor or delay_qvalue) and not delay_value:
pytest.skip("incompatible config")
torch.manual_seed(self.seed)
td = self._create_seq_mock_data_sac(device=device)
td = self._create_seq_mock_data_sac(
device=device, composite_action_dist=composite_action_dist
)

actor = self._create_mock_actor(device=device)
actor = self._create_mock_actor(
device=device, composite_action_dist=composite_action_dist
)
qvalue = self._create_mock_qvalue(device=device)
if version == 1:
value = self._create_mock_value(device=device)
Expand Down Expand Up @@ -4126,10 +4206,11 @@ def test_sac_batcher(
@pytest.mark.parametrize(
"td_est", [ValueEstimators.TD1, ValueEstimators.TD0, ValueEstimators.TDLambda]
)
def test_sac_tensordict_keys(self, td_est, version):
td = self._create_mock_data_sac()
@pytest.mark.parametrize("composite_action_dist", [True, False])
def test_sac_tensordict_keys(self, td_est, version, composite_action_dist):
td = self._create_mock_data_sac(composite_action_dist=composite_action_dist)

actor = self._create_mock_actor()
actor = self._create_mock_actor(composite_action_dist=composite_action_dist)
qvalue = self._create_mock_qvalue()
if version == 1:
value = self._create_mock_value()
Expand All @@ -4149,7 +4230,7 @@ def test_sac_tensordict_keys(self, td_est, version):
"value": "state_value",
"state_action_value": "state_action_value",
"action": "action",
"log_prob": "_log_prob",
"log_prob": "sample_log_prob",
"reward": "reward",
"done": "done",
"terminated": "terminated",
Expand Down Expand Up @@ -4311,15 +4392,20 @@ def test_state_dict(self, version):
loss.load_state_dict(state)

@pytest.mark.parametrize("reduction", [None, "none", "mean", "sum"])
def test_sac_reduction(self, reduction, version):
@pytest.mark.parametrize("composite_action_dist", [True, False])
def test_sac_reduction(self, reduction, version, composite_action_dist):
torch.manual_seed(self.seed)
device = (
torch.device("cpu")
if torch.cuda.device_count() == 0
else torch.device("cuda")
)
td = self._create_mock_data_sac(device=device)
actor = self._create_mock_actor(device=device)
td = self._create_mock_data_sac(
device=device, composite_action_dist=composite_action_dist
)
actor = self._create_mock_actor(
device=device, composite_action_dist=composite_action_dist
)
qvalue = self._create_mock_qvalue(device=device)
if version == 1:
value = self._create_mock_value(device=device)
Expand Down
Loading
Loading