Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add modules.AdditiveGaussianModule #2296

Merged
merged 1 commit into from
Jul 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/reference/modules.rst
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ other cases, the action written in the tensordict is simply the network output.
:toctree: generated/
:template: rl_template_noinherit.rst

AdditiveGaussianModule
AdditiveGaussianWrapper
EGreedyModule
EGreedyWrapper
Expand Down
93 changes: 69 additions & 24 deletions test/test_exploration.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,7 @@
)
from torchrl.modules.tensordict_module.exploration import (
_OrnsteinUhlenbeckProcess,
AdditiveGaussianModule,
AdditiveGaussianWrapper,
EGreedyModule,
EGreedyWrapper,
Expand Down Expand Up @@ -392,39 +393,51 @@ def test_nested(
@pytest.mark.parametrize("device", get_default_devices())
class TestAdditiveGaussian:
@pytest.mark.parametrize("spec_origin", ["spec", "policy", None])
@pytest.mark.parametrize("interface", ["module", "wrapper"])
def test_additivegaussian_sd(
self,
device,
spec_origin,
interface,
d_obs=4,
d_act=6,
batch=32,
n_steps=100,
seed=0,
):
if interface == "module" and spec_origin != "spec":
pytest.skip("module raises an error if given spec=None")

torch.manual_seed(seed)
net = NormalParamWrapper(nn.Linear(d_obs, 2 * d_act)).to(device)
action_spec = BoundedTensorSpec(
-torch.ones(d_act, device=device),
torch.ones(d_act, device=device),
(d_act,),
device=device,
)
module = SafeModule(
net,
in_keys=["observation"],
out_keys=["loc", "scale"],
spec=None,
)
policy = ProbabilisticActor(
spec=CompositeSpec(action=action_spec) if spec_origin is not None else None,
module=module,
in_keys=["loc", "scale"],
distribution_class=TanhNormal,
default_interaction_type=InteractionType.RANDOM,
).to(device)
given_spec = action_spec if spec_origin == "spec" else None
exploratory_policy = AdditiveGaussianWrapper(policy, spec=given_spec).to(device)
if interface == "module":
exploratory_policy = AdditiveGaussianModule(action_spec).to(device)
else:
net = NormalParamWrapper(nn.Linear(d_obs, 2 * d_act)).to(device)
module = SafeModule(
net,
in_keys=["observation"],
out_keys=["loc", "scale"],
spec=None,
)
policy = ProbabilisticActor(
spec=CompositeSpec(action=action_spec)
if spec_origin is not None
else None,
module=module,
in_keys=["loc", "scale"],
distribution_class=TanhNormal,
default_interaction_type=InteractionType.RANDOM,
).to(device)
given_spec = action_spec if spec_origin == "spec" else None
exploratory_policy = AdditiveGaussianWrapper(policy, spec=given_spec).to(
device
)
if spec_origin is not None:
sigma_init = (
action_spec.project(
Expand All @@ -442,9 +455,14 @@ def test_additivegaussian_sd(
sigma_init = exploratory_policy.sigma_init
sigma_end = exploratory_policy.sigma_end
if spec_origin is None:
class_name = (
"AdditiveGaussianModule"
if interface == "module"
else "AdditiveGaussianWrapper"
)
with pytest.raises(
RuntimeError,
match="the action spec must be provided to AdditiveGaussianWrapper",
match=f"the action spec must be provided to {class_name}",
):
exploratory_policy._add_noise(action_spec.rand((100000,)).zero_())
return
Expand All @@ -466,9 +484,21 @@ def test_additivegaussian_sd(
assert abs(noisy_action.std() - sigma_end) < 1e-1

@pytest.mark.parametrize("spec_origin", ["spec", "policy", None])
def test_additivegaussian_wrapper(
self, device, spec_origin, d_obs=4, d_act=6, batch=32, n_steps=100, seed=0
@pytest.mark.parametrize("interface", ["module", "wrapper"])
def test_additivegaussian(
self,
device,
spec_origin,
interface,
d_obs=4,
d_act=6,
batch=32,
n_steps=100,
seed=0,
):
if interface == "module" and spec_origin != "spec":
pytest.skip("module raises an error if given spec=None")

torch.manual_seed(seed)
net = NormalParamWrapper(nn.Linear(d_obs, 2 * d_act)).to(device)
module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
Expand All @@ -486,9 +516,14 @@ def test_additivegaussian_wrapper(
default_interaction_type=InteractionType.RANDOM,
).to(device)
given_spec = action_spec if spec_origin == "spec" else None
exploratory_policy = AdditiveGaussianWrapper(
policy, spec=given_spec, safe=False
).to(device)
if interface == "module":
exploratory_policy = TensorDictSequential(
policy, AdditiveGaussianModule(spec=given_spec).to(device)
)
else:
exploratory_policy = AdditiveGaussianWrapper(
policy, spec=given_spec, safe=False
).to(device)

tensordict = TensorDict(
batch_size=[batch],
Expand All @@ -513,7 +548,8 @@ def test_additivegaussian_wrapper(
assert action_spec.is_in(out.get("action"))

@pytest.mark.parametrize("parallel_spec", [True, False])
def test_collector(self, device, parallel_spec, seed=0):
@pytest.mark.parametrize("interface", ["module", "wrapper"])
def test_collector(self, device, parallel_spec, interface, seed=0):
torch.manual_seed(seed)
env = SerialEnv(
2,
Expand All @@ -539,7 +575,12 @@ def test_collector(self, device, parallel_spec, seed=0):
default_interaction_type=InteractionType.RANDOM,
spec=action_spec,
).to(device)
exploratory_policy = AdditiveGaussianWrapper(policy, safe=False)
if interface == "module":
exploratory_policy = TensorDictSequential(
policy, AdditiveGaussianModule(spec=action_spec).to(device)
)
else:
exploratory_policy = AdditiveGaussianWrapper(policy, safe=False)
exploratory_policy(env.reset())
collector = SyncDataCollector(
create_env_fn=env,
Expand All @@ -553,6 +594,10 @@ def test_collector(self, device, parallel_spec, seed=0):
pass
return

def test_no_spec_error(self, device):
with pytest.raises(RuntimeError, match="spec cannot be None."):
AdditiveGaussianModule(spec=None).to(device)


@pytest.mark.parametrize("state_dim", [7])
@pytest.mark.parametrize("action_dim", [5, 11])
Expand Down
1 change: 1 addition & 0 deletions torchrl/modules/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
ActorCriticOperator,
ActorCriticWrapper,
ActorValueOperator,
AdditiveGaussianModule,
AdditiveGaussianWrapper,
DecisionTransformerInferenceWrapper,
DistributionalQValueActor,
Expand Down
1 change: 1 addition & 0 deletions torchrl/modules/tensordict_module/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
)
from .common import SafeModule, VmapModule
from .exploration import (
AdditiveGaussianModule,
AdditiveGaussianWrapper,
EGreedyModule,
EGreedyWrapper,
Expand Down
118 changes: 118 additions & 0 deletions torchrl/modules/tensordict_module/exploration.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
__all__ = [
"EGreedyWrapper",
"EGreedyModule",
"AdditiveGaussianModule",
"AdditiveGaussianWrapper",
"OrnsteinUhlenbeckProcessWrapper",
]
Expand Down Expand Up @@ -299,6 +300,12 @@ def __init__(
spec: Optional[TensorSpec] = None,
safe: Optional[bool] = True,
):
warnings.warn(
"AdditiveGaussianWrapper is deprecated and will be removed "
"in v0.7. Please use torchrl.modules.AdditiveGaussianModule "
"instead.",
category=DeprecationWarning,
)
super().__init__(policy)
if sigma_end > sigma_init:
raise RuntimeError("sigma should decrease over time or be constant")
Expand Down Expand Up @@ -382,6 +389,117 @@ def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
return tensordict


class AdditiveGaussianModule(TensorDictModuleBase):
"""Additive Gaussian PO module.

Args:
spec (TensorSpec): the spec used for sampling actions. The sampled
action will be projected onto the valid action space once explored.
sigma_init (scalar, optional): initial epsilon value.
default: 1.0
sigma_end (scalar, optional): final epsilon value.
default: 0.1
annealing_num_steps (int, optional): number of steps it will take for
sigma to reach the :obj:`sigma_end` value.
default: 1000
mean (float, optional): mean of each output element’s normal distribution.
default: 0.0
std (float, optional): standard deviation of each output element’s normal distribution.
default: 1.0

Keyword Args:
action_key (NestedKey, optional): if the policy module has more than one output key,
its output spec will be of type CompositeSpec. One needs to know where to
find the action spec.
default: "action"

.. note::
It is
crucial to incorporate a call to :meth:`~.step` in the training loop
to update the exploration factor.
Since it is not easy to capture this omission no warning or exception
will be raised if this is ommitted!


"""

def __init__(
self,
spec: TensorSpec,
sigma_init: float = 1.0,
sigma_end: float = 0.1,
annealing_num_steps: int = 1000,
mean: float = 0.0,
std: float = 1.0,
*,
action_key: Optional[NestedKey] = "action",
):
if not isinstance(sigma_init, float):
warnings.warn("eps_init should be a float.")
if sigma_end > sigma_init:
raise RuntimeError("sigma should decrease over time or be constant")
self.action_key = action_key
self.in_keys = [self.action_key]
self.out_keys = [self.action_key]

super().__init__()

self.register_buffer("sigma_init", torch.tensor([sigma_init]))
self.register_buffer("sigma_end", torch.tensor([sigma_end]))
self.annealing_num_steps = annealing_num_steps
self.register_buffer("mean", torch.tensor([mean]))
self.register_buffer("std", torch.tensor([std]))
self.register_buffer("sigma", torch.tensor([sigma_init], dtype=torch.float32))

if spec is not None:
if not isinstance(spec, CompositeSpec) and len(self.out_keys) >= 1:
spec = CompositeSpec({action_key: spec}, shape=spec.shape[:-1])
else:
raise RuntimeError("spec cannot be None.")
self._spec = spec
self.register_forward_hook(_forward_hook_safe_action)

@property
def spec(self):
return self._spec

def step(self, frames: int = 1) -> None:
"""A step of sigma decay.

After `self.annealing_num_steps` calls to this method, calls result in no-op.

Args:
frames (int): number of frames since last step. Defaults to ``1``.

"""
for _ in range(frames):
self.sigma.data[0] = max(
self.sigma_end.item(),
(
self.sigma
- (self.sigma_init - self.sigma_end) / self.annealing_num_steps
).item(),
)

def _add_noise(self, action: torch.Tensor) -> torch.Tensor:
sigma = self.sigma.item()
noise = torch.normal(
mean=torch.ones(action.shape) * self.mean.item(),
std=torch.ones(action.shape) * self.std.item(),
).to(action.device)
action = action + noise * sigma
spec = self.spec[self.action_key]
action = spec.project(action)
return action

def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
if exploration_type() is ExplorationType.RANDOM or exploration_type() is None:
out = tensordict.get(self.action_key)
out = self._add_noise(out)
tensordict.set(self.action_key, out)
return tensordict


class OrnsteinUhlenbeckProcessWrapper(TensorDictModuleWrapper):
r"""Ornstein-Uhlenbeck exploration policy wrapper.

Expand Down
Loading