Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BugFix] Fix to in MultiDiscreteTensorSpec #2204

Merged
merged 2 commits into from
Jun 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 147 additions & 0 deletions test/test_specs.py
Original file line number Diff line number Diff line change
Expand Up @@ -1908,6 +1908,153 @@ def test_unboundeddiscrete(
assert spec == torch.stack(spec.unbind(-1), -1)


@pytest.mark.parametrize(
"device",
[torch.device("cpu")]
+ [torch.device(f"cuda:{i}" for i in range(torch.cuda.device_count()))],
)
class TestTo:
@pytest.mark.parametrize("shape1", [(5, 4)])
def test_binary(self, shape1, device):
spec = BinaryDiscreteTensorSpec(
n=4, shape=shape1, device="cpu", dtype=torch.bool
)
assert spec.to(device).device == device

@pytest.mark.parametrize(
"shape1,mini,maxi",
[
[(10,), -torch.ones([]), torch.ones([])],
[None, -torch.ones([10]), torch.ones([])],
[None, -torch.ones([]), torch.ones([10])],
[(10,), -torch.ones([]), torch.ones([10])],
[(10,), -torch.ones([10]), torch.ones([])],
[(10,), -torch.ones([10]), torch.ones([10])],
],
)
def test_bounded(self, shape1, mini, maxi, device):
spec = BoundedTensorSpec(
mini, maxi, shape=shape1, device="cpu", dtype=torch.bool
)
assert spec.to(device).device == device

def test_composite(self, device):
batch_size = (5,)
spec1 = BoundedTensorSpec(
-torch.ones([*batch_size, 10]),
torch.ones([*batch_size, 10]),
shape=(
*batch_size,
10,
),
device="cpu",
dtype=torch.bool,
)
spec2 = BinaryDiscreteTensorSpec(
n=4, shape=(*batch_size, 4), device="cpu", dtype=torch.bool
)
spec3 = DiscreteTensorSpec(
n=4, shape=batch_size, device="cpu", dtype=torch.long
)
spec4 = MultiDiscreteTensorSpec(
nvec=(4, 5, 6), shape=(*batch_size, 3), device="cpu", dtype=torch.long
)
spec5 = MultiOneHotDiscreteTensorSpec(
nvec=(4, 5, 6), shape=(*batch_size, 15), device="cpu", dtype=torch.long
)
spec6 = OneHotDiscreteTensorSpec(
n=15, shape=(*batch_size, 15), device="cpu", dtype=torch.long
)
spec7 = UnboundedContinuousTensorSpec(
shape=(*batch_size, 9),
device="cpu",
dtype=torch.float64,
)
spec8 = UnboundedDiscreteTensorSpec(
shape=(*batch_size, 9),
device="cpu",
dtype=torch.long,
)
spec = CompositeSpec(
spec1=spec1,
spec2=spec2,
spec3=spec3,
spec4=spec4,
spec5=spec5,
spec6=spec6,
spec7=spec7,
spec8=spec8,
shape=batch_size,
)
assert spec.to(device).device == device

@pytest.mark.parametrize("shape1", [(5,), (5, 6)])
def test_discrete(
self,
shape1,
device,
):
spec = DiscreteTensorSpec(n=4, shape=shape1, device="cpu", dtype=torch.long)
assert spec.to(device).device == device

@pytest.mark.parametrize("shape1", [(5,), (5, 6)])
def test_multidiscrete(self, shape1, device):
if shape1 is None:
shape1 = (3,)
else:
shape1 = (*shape1, 3)
spec = MultiDiscreteTensorSpec(
nvec=(4, 5, 6), shape=shape1, device="cpu", dtype=torch.long
)
assert spec.to(device).device == device

@pytest.mark.parametrize("shape1", [(5,), (5, 6)])
def test_multionehot(self, shape1, device):
if shape1 is None:
shape1 = (15,)
else:
shape1 = (*shape1, 15)
spec = MultiOneHotDiscreteTensorSpec(
nvec=(4, 5, 6), shape=shape1, device="cpu", dtype=torch.long
)
assert spec.to(device).device == device

def test_non_tensor(self, device):
spec = NonTensorSpec(shape=(3, 4), device="cpu")
assert spec.to(device).device == device

@pytest.mark.parametrize("shape1", [(5,), (5, 6)])
def test_onehot(self, shape1, device):
if shape1 is None:
shape1 = (15,)
else:
shape1 = (*shape1, 15)
spec = OneHotDiscreteTensorSpec(
n=15, shape=shape1, device="cpu", dtype=torch.long
)
assert spec.to(device).device == device

@pytest.mark.parametrize("shape1", [(5,), (5, 6)])
def test_unbounded(self, shape1, device):
if shape1 is None:
shape1 = (15,)
else:
shape1 = (*shape1, 15)
spec = UnboundedContinuousTensorSpec(
shape=shape1, device="cpu", dtype=torch.float64
)
assert spec.to(device).device == device

@pytest.mark.parametrize("shape1", [(5,), (5, 6)])
def test_unboundeddiscrete(self, shape1, device):
if shape1 is None:
shape1 = (15,)
else:
shape1 = (*shape1, 15)
spec = UnboundedDiscreteTensorSpec(shape=shape1, device="cpu", dtype=torch.long)
assert spec.to(device).device == device


@pytest.mark.parametrize(
"shape,stack_dim",
[[(), 0], [(2,), 0], [(2,), 1], [(2, 3), 0], [(2, 3), 1], [(2, 3), 2]],
Expand Down
2 changes: 1 addition & 1 deletion torchrl/data/tensor_specs.py
Original file line number Diff line number Diff line change
Expand Up @@ -3369,7 +3369,7 @@ def to(self, dest: Union[torch.dtype, DEVICE_TYPING]) -> CompositeSpec:
return self
mask = self.mask.to(dest) if self.mask is not None else None
return self.__class__(
n=self.nvec.to(dest),
nvec=self.nvec.to(dest),
shape=None,
device=dest_device,
dtype=dest_dtype,
Expand Down
Loading