Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Performance] Faster target update using foreach #2046

Merged
merged 2 commits into from
Oct 11, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 53 additions & 24 deletions torchrl/objectives/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -203,23 +203,37 @@ def __init__(

@property
def _targets(self):
return TensorDict(
{name: getattr(self.loss_module, name) for name in self._target_names},
[],
)
targets = self.__dict__.get("_targets_val", None)
if targets is None:
targets = self.__dict__["_targets_val"] = TensorDict(
{name: getattr(self.loss_module, name) for name in self._target_names},
[],
)
return targets

@_targets.setter
def _targets(self, targets):
self.__dict__["_targets_val"] = targets

@property
def _sources(self):
return TensorDict(
{name: getattr(self.loss_module, name) for name in self._source_names},
[],
)
sources = self.__dict__.get("_sources_val", None)
if sources is None:
sources = self.__dict__["_sources_val"] = TensorDict(
{name: getattr(self.loss_module, name) for name in self._source_names},
[],
)
return sources

@_sources.setter
def _sources(self, sources):
self.__dict__["_sources_val"] = sources

def init_(self) -> None:
if self.initialized:
warnings.warn("Updated already initialized.")
found_distinct = False
self._distinct = {}
self._distinct_and_params = {}
for key, source in self._sources.items(True, True):
if not isinstance(key, tuple):
key = (key,)
Expand All @@ -228,8 +242,12 @@ def init_(self) -> None:
# for p_source, p_target in zip(source, target):
if target.requires_grad:
raise RuntimeError("the target parameter is part of a graph.")
self._distinct[key] = target.data_ptr() != source.data.data_ptr()
found_distinct = found_distinct or self._distinct[key]
self._distinct_and_params[key] = (
target.is_leaf
and source.requires_grad
and target.data_ptr() != source.data.data_ptr()
)
found_distinct = found_distinct or self._distinct_and_params[key]
target.data.copy_(source.data)
if not found_distinct:
raise RuntimeError(
Expand All @@ -240,6 +258,23 @@ def init_(self) -> None:
f"If no target parameter is needed, do not use a target updater such as {type(self)}."
)

# filter the target_ out
def filter_target(key):
if isinstance(key, tuple):
return (filter_target(key[0]), *key[1:])
return key[7:]

self._sources = self._sources.select(
*[
filter_target(key)
for (key, val) in self._distinct_and_params.items()
if val
]
).lock_()
self._targets = self._targets.select(
*(key for (key, val) in self._distinct_and_params.items() if val)
).lock_()

self.initialized = True

def step(self) -> None:
Expand All @@ -248,19 +283,11 @@ def step(self) -> None:
f"{self.__class__.__name__} must be "
f"initialized (`{self.__class__.__name__}.init_()`) before calling step()"
)
for key, source in self._sources.items(True, True):
if not isinstance(key, tuple):
key = (key,)
key = ("target_" + key[0], *key[1:])
if not self._distinct[key]:
continue
target = self._targets[key]
for key, param in self._sources.items():
target = self._targets.get("target_{}".format(key))
if target.requires_grad:
raise RuntimeError("the target parameter is part of a graph.")
if target.is_leaf:
self._step(source, target)
else:
target.copy_(source)
self._step(param, target)

def _step(self, p_source: Tensor, p_target: Tensor) -> None:
raise NotImplementedError
Expand Down Expand Up @@ -326,8 +353,10 @@ def __init__(
super(SoftUpdate, self).__init__(loss_module)
self.eps = eps

def _step(self, p_source: Tensor, p_target: Tensor) -> None:
p_target.data.copy_(p_target.data * self.eps + p_source.data * (1 - self.eps))
def _step(
self, p_source: Tensor | TensorDictBase, p_target: Tensor | TensorDictBase
) -> None:
p_target.data.lerp_(p_source.data, 1 - self.eps)


class HardUpdate(TargetNetUpdater):
Expand Down
Loading