Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] shifted for all adv #1276

Merged
merged 2 commits into from
Jun 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 6 additions & 1 deletion test/test_cost.py
Original file line number Diff line number Diff line change
Expand Up @@ -7101,14 +7101,16 @@ def test_diff_reward(
[TDLambdaEstimator, {"lmbda": 0.95}],
],
)
def test_non_differentiable(self, adv, kwargs):
@pytest.mark.parametrize("shifted", [True, False])
def test_non_differentiable(self, adv, shifted, kwargs):
value_net = TensorDictModule(
nn.Linear(3, 1), in_keys=["obs"], out_keys=["state_value"]
)
module = adv(
gamma=0.98,
value_network=value_net,
differentiable=False,
shifted=shifted,
**kwargs,
)
td = TensorDict(
Expand All @@ -7135,12 +7137,14 @@ def test_non_differentiable(self, adv, kwargs):
)
@pytest.mark.parametrize("has_value_net", [True, False])
@pytest.mark.parametrize("skip_existing", [True, False, None])
@pytest.mark.parametrize("shifted", [True, False])
def test_skip_existing(
self,
adv,
kwargs,
has_value_net,
skip_existing,
shifted,
):
if has_value_net:
value_net = TensorDictModule(
Expand All @@ -7155,6 +7159,7 @@ def test_skip_existing(
gamma=0.98,
value_network=value_net,
differentiable=True,
shifted=shifted,
skip_existing=skip_existing,
**kwargs,
)
Expand Down
38 changes: 32 additions & 6 deletions torchrl/objectives/value/advantages.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,23 +78,22 @@ def _call_value_nets(
ndim = i + 1
if single_call:
# get data at t and last of t+1
data = torch.cat(
data_in = torch.cat(
[
data.select(*in_keys, value_key, strict=False),
data.get("next").select(*in_keys, value_key, strict=False)[..., -1:],
],
-1,
)
print("single", data)
# next_params should be None or be identical to params
if next_params is not None and next_params is not params:
raise ValueError(
"the value at t and t+1 cannot be retrieved in a single call without recurring to vmap when both params and next params are passed."
)
if params is not None:
value_est = value_net(data, params).get(value_key)
value_est = value_net(data_in, params).get(value_key)
else:
value_est = value_net(data).get(value_key)
value_est = value_net(data_in).get(value_key)
idx = (slice(None),) * (ndim - 1) + (slice(None, -1),)
idx_ = (slice(None),) * (ndim - 1) + (slice(1, None),)
value, value_ = value_est[idx], value_est[idx_]
Expand All @@ -117,8 +116,8 @@ def _call_value_nets(
data_out = torch.vmap(value_net, (0,))(data_in)
value_est = data_out.get(value_key)
value, value_ = value_est[0], value_est[1]
data.set(value_key, value)
data.set(("next", value_key), value_)
data.set(value_key, value)
data.set(("next", value_key), value_)
if detach_next:
value_ = value_.detach()
return value, value_
Expand Down Expand Up @@ -572,6 +571,13 @@ class TD1Estimator(ValueEstimatorBase):
of the advantage entry. Defaults to ``"value_target"``.
value_key (str or tuple of str, optional): [Deprecated] the value key to
read from the input tensordict. Defaults to ``"state_value"``.
shifted (bool, optional): if ``True``, the value and next value are
estimated with a single call to the value network. This is faster
but is only valid whenever (1) the ``"next"`` value is shifted by
only one time step (which is not the case with multi-step value
estimation, for instance) and (2) when the parameters used at time
``t`` and ``t+1`` are identical (which is not the case when target
parameters are to be used). Defaults to ``False``.

"""

Expand All @@ -586,13 +592,15 @@ def __init__(
advantage_key: NestedKey = None,
value_target_key: NestedKey = None,
value_key: NestedKey = None,
shifted: bool = False,
):
super().__init__(
value_network=value_network,
differentiable=differentiable,
advantage_key=advantage_key,
value_target_key=value_target_key,
value_key=value_key,
shifted=shifted,
skip_existing=skip_existing,
)
try:
Expand Down Expand Up @@ -758,6 +766,13 @@ class TDLambdaEstimator(ValueEstimatorBase):
of the advantage entry. Defaults to ``"value_target"``.
value_key (str or tuple of str, optional): [Deprecated] the value key to
read from the input tensordict. Defaults to ``"state_value"``.
shifted (bool, optional): if ``True``, the value and next value are
estimated with a single call to the value network. This is faster
but is only valid whenever (1) the ``"next"`` value is shifted by
only one time step (which is not the case with multi-step value
estimation, for instance) and (2) when the parameters used at time
``t`` and ``t+1`` are identical (which is not the case when target
parameters are to be used). Defaults to ``False``.

"""

Expand All @@ -774,6 +789,7 @@ def __init__(
advantage_key: NestedKey = None,
value_target_key: NestedKey = None,
value_key: NestedKey = None,
shifted: bool = False,
):
super().__init__(
value_network=value_network,
Expand All @@ -782,6 +798,7 @@ def __init__(
value_target_key=value_target_key,
value_key=value_key,
skip_existing=skip_existing,
shifted=shifted,
)
try:
device = next(value_network.parameters()).device
Expand Down Expand Up @@ -959,6 +976,13 @@ class GAE(ValueEstimatorBase):
of the advantage entry. Defaults to ``"value_target"``.
value_key (str or tuple of str, optional): [Deprecated] the value key to
read from the input tensordict. Defaults to ``"state_value"``.
shifted (bool, optional): if ``True``, the value and next value are
estimated with a single call to the value network. This is faster
but is only valid whenever (1) the ``"next"`` value is shifted by
only one time step (which is not the case with multi-step value
estimation, for instance) and (2) when the parameters used at time
``t`` and ``t+1`` are identical (which is not the case when target
parameters are to be used). Defaults to ``False``.

GAE will return an :obj:`"advantage"` entry containing the advange value. It will also
return a :obj:`"value_target"` entry with the return value that is to be used
Expand Down Expand Up @@ -987,8 +1011,10 @@ def __init__(
advantage_key: NestedKey = None,
value_target_key: NestedKey = None,
value_key: NestedKey = None,
shifted: bool = False,
):
super().__init__(
shifted=shifted,
value_network=value_network,
differentiable=differentiable,
advantage_key=advantage_key,
Expand Down