Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Refactor] Refactor DQN #1085

Merged
merged 24 commits into from
Apr 25, 2023
Prev Previous commit
Next Next commit
amend
  • Loading branch information
vmoens committed Apr 24, 2023
commit 441dc7c45ab8cdd8084782995976f9bcdb2ab33b
177 changes: 91 additions & 86 deletions tutorials/sphinx-tutorials/dqn_with_rnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,101 +34,106 @@

device = torch.device(0) if torch.cuda.device_count() else torch.device("cpu")

with torch.device(device):
env = TransformedEnv(
GymEnv("CartPole-v1", from_pixels=True, device=device),
Compose(
ToTensorImage(),
TensorDictPrimer(
{
"hidden_0": UnboundedContinuousTensorSpec(shape=(1, 128)),
"hidden_1": UnboundedContinuousTensorSpec(shape=(1, 128)),
}
),
GrayScale(),
Resize(84, 84),
StepCounter(),
InitTracker(),
RewardScaling(loc=0.0, scale=0.1),
ObservationNorm(standard_normal=True, in_keys=["pixels"]),
env = TransformedEnv(
GymEnv("CartPole-v1", from_pixels=True, device=device),
Compose(
ToTensorImage(),
TensorDictPrimer(
{
"hidden_0": UnboundedContinuousTensorSpec(shape=(1, 128)),
"hidden_1": UnboundedContinuousTensorSpec(shape=(1, 128)),
}
),
)
env.transform[-1].init_stats(1000, reduce_dim=[0, 1, 2], cat_dim=0, keep_dims=[0])
td = env.reset()
GrayScale(),
Resize(84, 84),
StepCounter(),
InitTracker(),
RewardScaling(loc=0.0, scale=0.1),
ObservationNorm(standard_normal=True, in_keys=["pixels"]),
),
)
env.transform[-1].init_stats(1000, reduce_dim=[0, 1, 2], cat_dim=0, keep_dims=[0])
td = env.reset()

feature = Mod(
ConvNet(
num_cells=[32, 32, 64],
squeeze_output=True,
aggregator_class=nn.AdaptiveAvgPool2d,
aggregator_kwargs={"output_size": (1, 1)},
device=device,
),
in_keys=["pixels"],
out_keys=["embed"],
)
n_cells = feature(env.reset())["embed"].shape[-1]
print(n_cells)
lstm = nn.LSTM(input_size=n_cells, hidden_size=128, batch_first=True, device=device)
lstm = LSTMModule(
lstm,
in_keys=["embed", "hidden_0", "hidden_1"],
out_keys=["embed", ("next", "hidden_0"), ("next", "hidden_1")],
)
mlp = MLP(
out_features=2,
num_cells=[
64,
],
feature = Mod(
ConvNet(
num_cells=[32, 32, 64],
squeeze_output=True,
aggregator_class=nn.AdaptiveAvgPool2d,
aggregator_kwargs={"output_size": (1, 1)},
device=device,
)
mlp[-1].bias.data.fill_(0.0)
mlp = Mod(mlp, in_keys=["embed"], out_keys=["action_value"])
qval = QValueModule(action_space=env.action_spec)
),
in_keys=["pixels"],
out_keys=["embed"],
)
n_cells = feature(env.reset())["embed"].shape[-1]
print(n_cells)
lstm = nn.LSTM(input_size=n_cells, hidden_size=128, batch_first=True, device=device)
lstm = LSTMModule(
lstm,
in_keys=["embed", "hidden_0", "hidden_1"],
out_keys=["embed", ("next", "hidden_0"), ("next", "hidden_1")],
)
mlp = MLP(
out_features=2,
num_cells=[
64,
],
device=device,
)
mlp[-1].bias.data.fill_(0.0)
mlp = Mod(mlp, in_keys=["embed"], out_keys=["action_value"])
qval = QValueModule(action_space=env.action_spec)

stoch_policy = Seq(feature, lstm, mlp, qval)
stoch_policy = Seq(feature, lstm, mlp, qval)

stoch_policy = EGreedyWrapper(
stoch_policy, annealing_num_steps=1_000_000, spec=env.action_spec, eps_init=0.2
)
stoch_policy = EGreedyWrapper(
stoch_policy, annealing_num_steps=1_000_000, spec=env.action_spec, eps_init=0.2
)

policy = Seq(feature, lstm.set_temporal_mode(True), mlp, qval)
policy = Seq(feature, lstm.set_temporal_mode(True), mlp, qval)

policy(env.reset())
policy(env.reset())

loss_fn = DQNLoss(policy, action_space="one_hot", delay_value=True)
optim = torch.optim.Adam(policy.parameters(), lr=3e-4)
with torch.no_grad():
td = stoch_policy(env.reset())
loss_fn = DQNLoss(policy, action_space="one_hot", delay_value=True)
optim = torch.optim.Adam(policy.parameters(), lr=3e-4)
with torch.no_grad():
td = stoch_policy(env.reset())


collector = SyncDataCollector(
env, stoch_policy, frames_per_batch=50, total_frames=1_000_000
# env, stoch_policy, frames_per_batch=50, total_frames=1000,
)
rb = TensorDictReplayBuffer(storage=LazyMemmapStorage(200_000), batch_size=4, prefetch=10)
updater = SoftUpdate(loss_fn, eps=0.95)
updater.init_()
collector = SyncDataCollector(
env, stoch_policy, frames_per_batch=50, total_frames=1_000_000
# env, stoch_policy, frames_per_batch=50, total_frames=1000,
)
rb = TensorDictReplayBuffer(storage=LazyMemmapStorage(200_000), batch_size=4, prefetch=10)
updater = SoftUpdate(loss_fn, eps=0.95)
updater.init_()

utd = 16
pbar = tqdm.tqdm(total=5_000_000)
utd = 16
pbar = tqdm.tqdm(total=1_000_000)
longest = 0

for i, data in enumerate(collector):
if i == 0:
print("data:", data)
pbar.update(data.numel())
# it is important to pass data that is not flattened
rb.extend(data.unsqueeze(0).to_tensordict().cpu()) # .exclude("hidden_0", "hidden_1"))
for k in range(utd):
s = rb.sample().to(device)
if k == 0 and i == 0:
print("sample:", s)
loss_vals = loss_fn(s)
loss_vals["loss"].backward()
optim.step()
optim.zero_grad()
pbar.set_description(
f"steps: {data['step_count'].max()}, loss_val: {loss_vals['loss'].item(): 4.4f}, action_spread: {data['action'].sum(0)}"
)
stoch_policy.step(data.numel())
updater.step()
traj_lens = []
for i, data in enumerate(collector):
step_counts = data["next", "step_count"][data["next", "done"].squeeze(-1)]
if step_counts.numel():
traj_lens += step_counts.tolist()
if i == 0:
print("data:", data)
pbar.update(data.numel())
# it is important to pass data that is not flattened
rb.extend(data.unsqueeze(0).to_tensordict().cpu()) # .exclude("hidden_0", "hidden_1"))
for k in range(utd):
s = rb.sample().to(device)
if k == 0 and i == 0:
print("sample:", s)
loss_vals = loss_fn(s)
loss_vals["loss"].backward()
optim.step()
optim.zero_grad()
longest = max(longest, data['step_count'].max().item())
pbar.set_description(
f"steps: {longest}, loss_val: {loss_vals['loss'].item(): 4.4f}, action_spread: {data['action'].sum(0)}"
)
stoch_policy.step(data.numel())
updater.step()