-
Notifications
You must be signed in to change notification settings - Fork 326
/
td3.py
529 lines (486 loc) · 21.7 KB
/
td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from dataclasses import dataclass
from typing import List, Optional, Tuple
import torch
from tensordict import TensorDict, TensorDictBase, TensorDictParams
from tensordict.nn import dispatch, TensorDictModule
from tensordict.utils import NestedKey
from torchrl.data.tensor_specs import Bounded, Composite, TensorSpec
from torchrl.envs.utils import step_mdp
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
_cache_values,
_GAMMA_LMBDA_DEPREC_ERROR,
_reduce,
_vmap_func,
default_value_kwargs,
distance_loss,
ValueEstimators,
)
from torchrl.objectives.value import TD0Estimator, TD1Estimator, TDLambdaEstimator
class TD3Loss(LossModule):
"""TD3 Loss module.
Args:
actor_network (TensorDictModule): the actor to be trained
qvalue_network (TensorDictModule): a single Q-value network or a list of
Q-value networks.
If a single instance of `qvalue_network` is provided, it will be duplicated ``num_qvalue_nets``
times. If a list of modules is passed, their
parameters will be stacked unless they share the same identity (in which case
the original parameter will be expanded).
.. warning:: When a list of parameters if passed, it will __not__ be compared against the policy parameters
and all the parameters will be considered as untied.
Keyword Args:
bounds (tuple of float, optional): the bounds of the action space.
Exclusive with action_spec. Either this or ``action_spec`` must
be provided.
action_spec (TensorSpec, optional): the action spec.
Exclusive with bounds. Either this or ``bounds`` must be provided.
num_qvalue_nets (int, optional): Number of Q-value networks to be
trained. Default is ``10``.
policy_noise (:obj:`float`, optional): Standard deviation for the target
policy action noise. Default is ``0.2``.
noise_clip (:obj:`float`, optional): Clipping range value for the sampled
target policy action noise. Default is ``0.5``.
priority_key (str, optional): Key where to write the priority value
for prioritized replay buffers. Default is
`"td_error"`.
loss_function (str, optional): loss function to be used for the Q-value.
Can be one of ``"smooth_l1"``, ``"l2"``,
``"l1"``, Default is ``"smooth_l1"``.
delay_actor (bool, optional): whether to separate the target actor
networks from the actor networks used for
data collection. Default is ``True``.
delay_qvalue (bool, optional): Whether to separate the target Q value
networks from the Q value networks used
for data collection. Default is ``True``.
spec (TensorSpec, optional): the action tensor spec. If not provided
and the target entropy is ``"auto"``, it will be retrieved from
the actor.
separate_losses (bool, optional): if ``True``, shared parameters between
policy and critic will only be trained on the policy loss.
Defaults to ``False``, i.e., gradients are propagated to shared
parameters for both policy and critic losses.
reduction (str, optional): Specifies the reduction to apply to the output:
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
``"mean"``: the sum of the output will be divided by the number of
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import Actor, ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.td3 import TD3Loss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> module = nn.Linear(n_obs, n_act)
>>> actor = Actor(
... module=module,
... spec=spec)
>>> class ValueClass(nn.Module):
... def __init__(self):
... super().__init__()
... self.linear = nn.Linear(n_obs + n_act, 1)
... def forward(self, obs, act):
... return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
... module=module,
... in_keys=['observation', 'action'])
>>> loss = TD3Loss(actor, qvalue, action_spec=actor.spec)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
... "observation": torch.randn(*batch, n_obs),
... "action": action,
... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "reward"): torch.randn(*batch, 1),
... ("next", "observation"): torch.randn(*batch, n_obs),
... }, batch)
>>> loss(data)
TensorDict(
fields={
loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
next_state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
This class is compatible with non-tensordict based modules too and can be
used without recurring to any tensordict-related primitive. In this case,
the expected keyword arguments are:
``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and qvalue network
The return value is a tuple of tensors in the following order:
``["loss_actor", "loss_qvalue", "pred_value", "state_action_value_actor", "next_state_value", "target_value",]``.
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator
>>> from torchrl.objectives.td3 import TD3Loss
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> module = nn.Linear(n_obs, n_act)
>>> actor = Actor(
... module=module,
... spec=spec)
>>> class ValueClass(nn.Module):
... def __init__(self):
... super().__init__()
... self.linear = nn.Linear(n_obs + n_act, 1)
... def forward(self, obs, act):
... return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
... module=module,
... in_keys=['observation', 'action'])
>>> loss = TD3Loss(actor, qvalue, action_spec=actor.spec)
>>> _ = loss.select_out_keys("loss_actor", "loss_qvalue")
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> loss_actor, loss_qvalue = loss(
... observation=torch.randn(*batch, n_obs),
... action=action,
... next_done=torch.zeros(*batch, 1, dtype=torch.bool),
... next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
... next_reward=torch.randn(*batch, 1),
... next_observation=torch.randn(*batch, n_obs))
>>> loss_actor.backward()
"""
@dataclass
class _AcceptedKeys:
"""Maintains default values for all configurable tensordict keys.
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
default values.
Attributes:
action (NestedKey): The input tensordict key where the action is expected.
Defaults to ``"action"``.
state_action_value (NestedKey): The input tensordict key where the state action value is expected.
Will be used for the underlying value estimator. Defaults to ``"state_action_value"``.
priority (NestedKey): The input tensordict key where the target priority is written to.
Defaults to ``"td_error"``.
reward (NestedKey): The input tensordict key where the reward is expected.
Will be used for the underlying value estimator. Defaults to ``"reward"``.
done (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is done. Will be used for the underlying value estimator.
Defaults to ``"done"``.
terminated (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is terminated. Will be used for the underlying value estimator.
Defaults to ``"terminated"``.
"""
action: NestedKey = "action"
state_action_value: NestedKey = "state_action_value"
priority: NestedKey = "td_error"
reward: NestedKey = "reward"
done: NestedKey = "done"
terminated: NestedKey = "terminated"
default_keys = _AcceptedKeys()
default_value_estimator = ValueEstimators.TD0
out_keys = [
"loss_actor",
"loss_qvalue",
"pred_value",
"state_action_value_actor",
"next_state_value",
"target_value",
]
actor_network: TensorDictModule
qvalue_network: TensorDictModule
actor_network_params: TensorDictParams
qvalue_network_params: TensorDictParams
target_actor_network_params: TensorDictParams
target_qvalue_network_params: TensorDictParams
def __init__(
self,
actor_network: TensorDictModule,
qvalue_network: TensorDictModule | List[TensorDictModule],
*,
action_spec: TensorSpec = None,
bounds: Optional[Tuple[float]] = None,
num_qvalue_nets: int = 2,
policy_noise: float = 0.2,
noise_clip: float = 0.5,
loss_function: str = "smooth_l1",
delay_actor: bool = True,
delay_qvalue: bool = True,
gamma: float = None,
priority_key: str = None,
separate_losses: bool = False,
reduction: str = None,
) -> None:
if reduction is None:
reduction = "mean"
super().__init__()
self._in_keys = None
self._set_deprecated_ctor_keys(priority=priority_key)
self.delay_actor = delay_actor
self.delay_qvalue = delay_qvalue
self.convert_to_functional(
actor_network,
"actor_network",
create_target_params=self.delay_actor,
)
if separate_losses:
# we want to make sure there are no duplicates in the params: the
# params of critic must be refs to actor if they're shared
policy_params = list(actor_network.parameters())
else:
policy_params = None
self.convert_to_functional(
qvalue_network,
"qvalue_network",
num_qvalue_nets,
create_target_params=self.delay_qvalue,
compare_against=policy_params,
)
for p in self.parameters():
device = p.device
break
else:
device = None
self.num_qvalue_nets = num_qvalue_nets
self.loss_function = loss_function
self.policy_noise = policy_noise
self.noise_clip = noise_clip
if not ((action_spec is not None) ^ (bounds is not None)):
raise ValueError(
"One of 'bounds' and 'action_spec' must be provided, "
f"but not both or none. Got bounds={bounds} and action_spec={action_spec}."
)
elif action_spec is not None:
if isinstance(action_spec, Composite):
if (
isinstance(self.tensor_keys.action, tuple)
and len(self.tensor_keys.action) > 1
):
action_container_shape = action_spec[
self.tensor_keys.action[:-1]
].shape
else:
action_container_shape = action_spec.shape
action_spec = action_spec[self.tensor_keys.action][
(0,) * len(action_container_shape)
]
if not isinstance(action_spec, Bounded):
raise ValueError(
f"action_spec is not of type Bounded but {type(action_spec)}."
)
low = action_spec.space.low
high = action_spec.space.high
else:
low, high = bounds
if not isinstance(low, torch.Tensor):
low = torch.tensor(low)
if not isinstance(high, torch.Tensor):
high = torch.tensor(high, device=low.device, dtype=low.dtype)
if (low > high).any():
raise ValueError("Got a low bound higher than a high bound.")
if device is not None:
low = low.to(device)
high = high.to(device)
self.register_buffer("max_action", high)
self.register_buffer("min_action", low)
if gamma is not None:
raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR)
self._make_vmap()
self.reduction = reduction
def _make_vmap(self):
self._vmap_qvalue_network00 = _vmap_func(
self.qvalue_network, randomness=self.vmap_randomness
)
self._vmap_actor_network00 = _vmap_func(
self.actor_network, randomness=self.vmap_randomness
)
def _forward_value_estimator_keys(self, **kwargs) -> None:
if self._value_estimator is not None:
self._value_estimator.set_keys(
value=self._tensor_keys.state_action_value,
reward=self.tensor_keys.reward,
done=self.tensor_keys.done,
terminated=self.tensor_keys.terminated,
)
self._set_in_keys()
def _set_in_keys(self):
keys = [
self.tensor_keys.action,
("next", self.tensor_keys.reward),
("next", self.tensor_keys.done),
("next", self.tensor_keys.terminated),
*self.actor_network.in_keys,
*[("next", key) for key in self.actor_network.in_keys],
*self.qvalue_network.in_keys,
]
self._in_keys = list(set(keys))
@property
def in_keys(self):
if self._in_keys is None:
self._set_in_keys()
return self._in_keys
@in_keys.setter
def in_keys(self, values):
self._in_keys = values
@property
@_cache_values
def _cached_detach_qvalue_network_params(self):
return self.qvalue_network_params.detach()
@property
@_cache_values
def _cached_stack_actor_params(self):
return torch.stack(
[self.actor_network_params, self.target_actor_network_params], 0
)
def actor_loss(self, tensordict) -> Tuple[torch.Tensor, dict]:
tensordict_actor_grad = tensordict.select(
*self.actor_network.in_keys, strict=False
)
with self.actor_network_params.to_module(self.actor_network):
tensordict_actor_grad = self.actor_network(tensordict_actor_grad)
actor_loss_td = tensordict_actor_grad.select(
*self.qvalue_network.in_keys, strict=False
).expand(
self.num_qvalue_nets, *tensordict_actor_grad.batch_size
) # for actor loss
state_action_value_actor = (
self._vmap_qvalue_network00(
actor_loss_td,
self._cached_detach_qvalue_network_params,
)
.get(self.tensor_keys.state_action_value)
.squeeze(-1)
)
loss_actor = -(state_action_value_actor[0])
metadata = {
"state_action_value_actor": state_action_value_actor.detach(),
}
loss_actor = _reduce(loss_actor, reduction=self.reduction)
return loss_actor, metadata
def value_loss(self, tensordict) -> Tuple[torch.Tensor, dict]:
tensordict = tensordict.clone(False)
act = tensordict.get(self.tensor_keys.action)
# computing early for reprod
noise = (torch.randn_like(act) * self.policy_noise).clamp(
-self.noise_clip, self.noise_clip
)
with torch.no_grad():
next_td_actor = step_mdp(tensordict).select(
*self.actor_network.in_keys, strict=False
) # next_observation ->
with self.target_actor_network_params.to_module(self.actor_network):
next_td_actor = self.actor_network(next_td_actor)
next_action = (next_td_actor.get(self.tensor_keys.action) + noise).clamp(
self.min_action, self.max_action
)
next_td_actor.set(
self.tensor_keys.action,
next_action,
)
next_val_td = next_td_actor.select(
*self.qvalue_network.in_keys, strict=False
).expand(
self.num_qvalue_nets, *next_td_actor.batch_size
) # for next value estimation
next_target_q1q2 = (
self._vmap_qvalue_network00(
next_val_td,
self.target_qvalue_network_params,
)
.get(self.tensor_keys.state_action_value)
.squeeze(-1)
)
# min over the next target qvalues
next_target_qvalue = next_target_q1q2.min(0)[0]
# set next target qvalues
tensordict.set(
("next", self.tensor_keys.state_action_value),
next_target_qvalue.unsqueeze(-1),
)
qval_td = tensordict.select(*self.qvalue_network.in_keys, strict=False).expand(
self.num_qvalue_nets,
*tensordict.batch_size,
)
# preditcted current qvalues
current_qvalue = (
self._vmap_qvalue_network00(
qval_td,
self.qvalue_network_params,
)
.get(self.tensor_keys.state_action_value)
.squeeze(-1)
)
# compute target values for the qvalue loss (reward + gamma * next_target_qvalue * (1 - done))
target_value = self.value_estimator.value_estimate(tensordict).squeeze(-1)
td_error = (current_qvalue - target_value).pow(2)
loss_qval = distance_loss(
current_qvalue,
target_value.expand_as(current_qvalue),
loss_function=self.loss_function,
).sum(0)
metadata = {
"td_error": td_error,
"next_state_value": next_target_qvalue.detach(),
"pred_value": current_qvalue.detach(),
"target_value": target_value.detach(),
}
loss_qval = _reduce(loss_qval, reduction=self.reduction)
return loss_qval, metadata
@dispatch
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
tensordict_save = tensordict
loss_actor, metadata_actor = self.actor_loss(tensordict)
loss_qval, metadata_value = self.value_loss(tensordict_save)
tensordict_save.set(
self.tensor_keys.priority, metadata_value.pop("td_error").detach().max(0)[0]
)
if not loss_qval.shape == loss_actor.shape:
raise RuntimeError(
f"QVal and actor loss have different shape: {loss_qval.shape} and {loss_actor.shape}"
)
td_out = TensorDict(
source={
"loss_actor": loss_actor,
"loss_qvalue": loss_qval,
**metadata_actor,
**metadata_value,
},
batch_size=[],
)
return td_out
def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
if value_type is None:
value_type = self.default_value_estimator
self.value_type = value_type
hp = dict(default_value_kwargs(value_type))
if hasattr(self, "gamma"):
hp["gamma"] = self.gamma
hp.update(hyperparams)
# we do not need a value network bc the next state value is already passed
if value_type == ValueEstimators.TD1:
self._value_estimator = TD1Estimator(value_network=None, **hp)
elif value_type == ValueEstimators.TD0:
self._value_estimator = TD0Estimator(value_network=None, **hp)
elif value_type == ValueEstimators.GAE:
raise NotImplementedError(
f"Value type {value_type} it not implemented for loss {type(self)}."
)
elif value_type == ValueEstimators.TDLambda:
self._value_estimator = TDLambdaEstimator(value_network=None, **hp)
else:
raise NotImplementedError(f"Unknown value type {value_type}")
tensor_keys = {
"value": self.tensor_keys.state_action_value,
"reward": self.tensor_keys.reward,
"done": self.tensor_keys.done,
"terminated": self.tensor_keys.terminated,
}
self._value_estimator.set_keys(**tensor_keys)