-
Notifications
You must be signed in to change notification settings - Fork 326
/
a2c.py
588 lines (539 loc) · 25.4 KB
/
a2c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import contextlib
from copy import deepcopy
from dataclasses import dataclass
from typing import Tuple
import torch
from tensordict import (
is_tensor_collection,
TensorDict,
TensorDictBase,
TensorDictParams,
)
from tensordict.nn import dispatch, ProbabilisticTensorDictSequential, TensorDictModule
from tensordict.utils import NestedKey
from torch import distributions as d
from torchrl.modules.distributions import HAS_ENTROPY
from torchrl.objectives.common import LossModule
from torchrl.objectives.utils import (
_cache_values,
_clip_value_loss,
_GAMMA_LMBDA_DEPREC_ERROR,
_get_default_device,
_reduce,
default_value_kwargs,
distance_loss,
ValueEstimators,
)
from torchrl.objectives.value import (
GAE,
TD0Estimator,
TD1Estimator,
TDLambdaEstimator,
VTrace,
)
class A2CLoss(LossModule):
"""TorchRL implementation of the A2C loss.
A2C (Advantage Actor Critic) is a model-free, online RL algorithm that uses parallel rollouts of n steps to
update the policy, relying on the REINFORCE estimator to compute the gradient. It also adds an entropy term to the
objective function to improve exploration.
For more details regarding A2C, refer to: "Asynchronous Methods for Deep Reinforcment Learning",
https://arxiv.org/abs/1602.01783v2
Args:
actor_network (ProbabilisticTensorDictSequential): policy operator.
critic_network (ValueOperator): value operator.
entropy_bonus (bool): if ``True``, an entropy bonus will be added to the
loss to favour exploratory policies.
samples_mc_entropy (int): if the distribution retrieved from the policy
operator does not have a closed form
formula for the entropy, a Monte-Carlo estimate will be used.
``samples_mc_entropy`` will control how many
samples will be used to compute this estimate.
Defaults to ``1``.
entropy_coef (:obj:`float`): the weight of the entropy loss. Defaults to `0.01``.
critic_coef (:obj:`float`): the weight of the critic loss. Defaults to ``1.0``. If ``None``, the critic
loss won't be included and the in-keys will miss the critic inputs.
loss_critic_type (str): loss function for the value discrepancy.
Can be one of "l1", "l2" or "smooth_l1". Defaults to ``"smooth_l1"``.
separate_losses (bool, optional): if ``True``, shared parameters between
policy and critic will only be trained on the policy loss.
Defaults to ``False``, i.e., gradients are propagated to shared
parameters for both policy and critic losses.
advantage_key (str): [Deprecated, use set_keys(advantage_key=advantage_key) instead]
The input tensordict key where the advantage is expected to be written. default: "advantage"
value_target_key (str): [Deprecated, use set_keys() instead] the input
tensordict key where the target state value is expected to be written. Defaults to ``"value_target"``.
functional (bool, optional): whether modules should be functionalized.
Functionalizing permits features like meta-RL, but makes it
impossible to use distributed models (DDP, FSDP, ...) and comes
with a little cost. Defaults to ``True``.
reduction (str, optional): Specifies the reduction to apply to the output:
``"none"`` | ``"mean"`` | ``"sum"``. ``"none"``: no reduction will be applied,
``"mean"``: the sum of the output will be divided by the number of
elements in the output, ``"sum"``: the output will be summed. Default: ``"mean"``.
clip_value (:obj:`float`, optional): If provided, it will be used to compute a clipped version of the value
prediction with respect to the input value estimate and use it to calculate the value loss.
The purpose of clipping is to limit the impact of extreme value predictions, helping stabilize training
and preventing large updates. However, it will have no impact if the value estimate was done by the current
version of the value estimator. Defaults to ``None``.
.. note:
The advantage (typically GAE) can be computed by the loss function or
in the training loop. The latter option is usually preferred, but this is
up to the user to choose which option is to be preferred.
If the advantage key (``"advantage`` by default) is not present in the
input tensordict, the advantage will be computed by the :meth:`~.forward`
method.
A custom advantage module can be built using :meth:`~.make_value_estimator`.
The default is :class:`~torchrl.objectives.value.GAE` with hyperparameters
dictated by :func:`~torchrl.objectives.utils.default_value_kwargs`.
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.a2c import A2CLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
... module=module,
... in_keys=["loc", "scale"],
... spec=spec,
... distribution_class=TanhNormal)
>>> module = nn.Linear(n_obs, 1)
>>> value = ValueOperator(
... module=module,
... in_keys=["observation"])
>>> loss = A2CLoss(actor, value, loss_critic_type="l2")
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
... "observation": torch.randn(*batch, n_obs),
... "action": action,
... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
... ("next", "reward"): torch.randn(*batch, 1),
... ("next", "observation"): torch.randn(*batch, n_obs),
... }, batch)
>>> loss(data)
TensorDict(
fields={
entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_critic: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
loss_objective: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
This class is compatible with non-tensordict based modules too and can be
used without recurring to any tensordict-related primitive. In this case,
the expected keyword arguments are:
``["action", "next_reward", "next_done", "next_terminated"]`` + in_keys of the actor and critic.
The return value is a tuple of tensors in the following order:
``["loss_objective"]`` + ``["loss_critic"]`` if critic_coef is not None + ``["entropy", "loss_entropy"]`` if entropy_bonus is True and critic_coef is not None
Examples:
>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.a2c import A2CLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
... module=module,
... in_keys=["loc", "scale"],
... spec=spec,
... distribution_class=TanhNormal)
>>> module = nn.Linear(n_obs, 1)
>>> value = ValueOperator(
... module=module,
... in_keys=["observation"])
>>> loss = A2CLoss(actor, value, loss_critic_type="l2")
>>> batch = [2, ]
>>> loss_obj, loss_critic, entropy, loss_entropy = loss(
... observation = torch.randn(*batch, n_obs),
... action = spec.rand(batch),
... next_done = torch.zeros(*batch, 1, dtype=torch.bool),
... next_terminated = torch.zeros(*batch, 1, dtype=torch.bool),
... next_reward = torch.randn(*batch, 1),
... next_observation = torch.randn(*batch, n_obs))
>>> loss_obj.backward()
The output keys can also be filtered using the :meth:`SACLoss.select_out_keys`
method.
Examples:
>>> loss.select_out_keys('loss_objective', 'loss_critic')
>>> loss_obj, loss_critic = loss(
... observation = torch.randn(*batch, n_obs),
... action = spec.rand(batch),
... next_done = torch.zeros(*batch, 1, dtype=torch.bool),
... next_terminated = torch.zeros(*batch, 1, dtype=torch.bool),
... next_reward = torch.randn(*batch, 1),
... next_observation = torch.randn(*batch, n_obs))
>>> loss_obj.backward()
.. note::
There is an exception regarding compatibility with non-tensordict-based modules.
If the actor network is probabilistic and uses a :class:`~tensordict.nn.distributions.CompositeDistribution`,
this class must be used with tensordicts and cannot function as a tensordict-independent module.
This is because composite action spaces inherently rely on the structured representation of data provided by
tensordicts to handle their actions.
"""
@dataclass
class _AcceptedKeys:
"""Maintains default values for all configurable tensordict keys.
This class defines which tensordict keys can be set using '.set_keys(key_name=key_value)' and their
default values.
Attributes:
advantage (NestedKey): The input tensordict key where the advantage is expected.
Will be used for the underlying value estimator. Defaults to ``"advantage"``.
value_target (NestedKey): The input tensordict key where the target state value is expected.
Will be used for the underlying value estimator Defaults to ``"value_target"``.
value (NestedKey): The input tensordict key where the state value is expected.
Will be used for the underlying value estimator. Defaults to ``"state_value"``.
action (NestedKey): The input tensordict key where the action is expected.
Defaults to ``"action"``.
reward (NestedKey): The input tensordict key where the reward is expected.
Will be used for the underlying value estimator. Defaults to ``"reward"``.
done (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is done. Will be used for the underlying value estimator.
Defaults to ``"done"``.
terminated (NestedKey): The key in the input TensorDict that indicates
whether a trajectory is terminated. Will be used for the underlying value estimator.
Defaults to ``"terminated"``.
"""
advantage: NestedKey = "advantage"
value_target: NestedKey = "value_target"
value: NestedKey = "state_value"
action: NestedKey = "action"
reward: NestedKey = "reward"
done: NestedKey = "done"
terminated: NestedKey = "terminated"
sample_log_prob: NestedKey = "sample_log_prob"
default_keys = _AcceptedKeys()
default_value_estimator: ValueEstimators = ValueEstimators.GAE
actor_network: TensorDictModule
critic_network: TensorDictModule
actor_network_params: TensorDictParams
critic_network_params: TensorDictParams
target_actor_network_params: TensorDictParams
target_critic_network_params: TensorDictParams
def __init__(
self,
actor_network: ProbabilisticTensorDictSequential = None,
critic_network: TensorDictModule = None,
*,
entropy_bonus: bool = True,
samples_mc_entropy: int = 1,
entropy_coef: float = 0.01,
critic_coef: float = 1.0,
loss_critic_type: str = "smooth_l1",
gamma: float = None,
separate_losses: bool = False,
advantage_key: str = None,
value_target_key: str = None,
functional: bool = True,
actor: ProbabilisticTensorDictSequential = None,
critic: ProbabilisticTensorDictSequential = None,
reduction: str = None,
clip_value: float | None = None,
):
if actor is not None:
actor_network = actor
del actor
if critic is not None:
critic_network = critic
del critic
if actor_network is None or critic_network is None:
raise TypeError(
"Missing positional arguments actor_network or critic_network."
)
if reduction is None:
reduction = "mean"
self._functional = functional
self._out_keys = None
super().__init__()
self._set_deprecated_ctor_keys(
advantage=advantage_key, value_target=value_target_key
)
if functional:
self.convert_to_functional(
actor_network,
"actor_network",
)
else:
self.actor_network = actor_network
if separate_losses:
# we want to make sure there are no duplicates in the params: the
# params of critic must be refs to actor if they're shared
policy_params = list(actor_network.parameters())
else:
policy_params = None
if functional:
self.convert_to_functional(
critic_network, "critic_network", compare_against=policy_params
)
else:
self.critic_network = critic_network
self.target_critic_network_params = None
self.samples_mc_entropy = samples_mc_entropy
self.entropy_bonus = entropy_bonus and entropy_coef
self.reduction = reduction
device = _get_default_device(self)
self.register_buffer(
"entropy_coef", torch.as_tensor(entropy_coef, device=device)
)
if critic_coef is not None:
self.register_buffer(
"critic_coef", torch.as_tensor(critic_coef, device=device)
)
else:
self.critic_coef = None
if gamma is not None:
raise TypeError(_GAMMA_LMBDA_DEPREC_ERROR)
self.loss_critic_type = loss_critic_type
if clip_value is not None:
if isinstance(clip_value, float):
clip_value = torch.tensor(clip_value)
elif isinstance(clip_value, torch.Tensor):
if clip_value.numel() != 1:
raise ValueError(
f"clip_value must be a float or a scalar tensor, got {clip_value}."
)
else:
raise ValueError(
f"clip_value must be a float or a scalar tensor, got {clip_value}."
)
self.register_buffer(
"clip_value", torch.as_tensor(clip_value, device=device)
)
else:
self.clip_value = None
@property
def functional(self):
return self._functional
@property
def in_keys(self):
keys = [
self.tensor_keys.action,
("next", self.tensor_keys.reward),
("next", self.tensor_keys.done),
("next", self.tensor_keys.terminated),
*self.actor_network.in_keys,
*[("next", key) for key in self.actor_network.in_keys],
]
if self.critic_coef is not None:
keys.extend(self.critic_network.in_keys)
return list(set(keys))
@property
def out_keys(self):
if self._out_keys is None:
outs = ["loss_objective"]
if self.critic_coef is not None:
outs.append("loss_critic")
if self.entropy_bonus:
outs.append("entropy")
outs.append("loss_entropy")
self._out_keys = outs
return self._out_keys
@out_keys.setter
def out_keys(self, value):
self._out_keys = value
def _forward_value_estimator_keys(self, **kwargs) -> None:
if self._value_estimator is not None:
self._value_estimator.set_keys(
advantage=self.tensor_keys.advantage,
value_target=self.tensor_keys.value_target,
value=self.tensor_keys.value,
reward=self.tensor_keys.reward,
done=self.tensor_keys.done,
terminated=self.tensor_keys.terminated,
)
def reset(self) -> None:
pass
def get_entropy_bonus(self, dist: d.Distribution) -> torch.Tensor:
if HAS_ENTROPY.get(type(dist), False):
entropy = dist.entropy()
else:
x = dist.rsample((self.samples_mc_entropy,))
log_prob = dist.log_prob(x)
if is_tensor_collection(log_prob):
log_prob = log_prob.get(self.tensor_keys.sample_log_prob)
entropy = -log_prob.mean(0)
return entropy.unsqueeze(-1)
def _log_probs(
self, tensordict: TensorDictBase
) -> Tuple[torch.Tensor, d.Distribution]:
# current log_prob of actions
action = tensordict.get(self.tensor_keys.action)
tensordict_clone = tensordict.select(
*self.actor_network.in_keys, strict=False
).clone()
with self.actor_network_params.to_module(
self.actor_network
) if self.functional else contextlib.nullcontext():
dist = self.actor_network.get_dist(tensordict_clone)
if action.requires_grad:
raise RuntimeError(
f"tensordict stored {self.tensor_keys.action} requires grad."
)
if isinstance(action, torch.Tensor):
log_prob = dist.log_prob(action)
else:
maybe_log_prob = dist.log_prob(tensordict)
if not isinstance(maybe_log_prob, torch.Tensor):
# In some cases (Composite distribution with aggregate_probabilities toggled off) the returned type may not
# be a tensor
log_prob = maybe_log_prob.get(self.tensor_keys.sample_log_prob)
else:
log_prob = maybe_log_prob
log_prob = log_prob.unsqueeze(-1)
return log_prob, dist
def loss_critic(self, tensordict: TensorDictBase) -> Tuple[torch.Tensor, float]:
"""Returns the loss value of the critic, multiplied by ``critic_coef`` if it is not ``None``.
Returns the loss and the clip-fraction.
"""
if self.clip_value:
old_state_value = tensordict.get(
self.tensor_keys.value, None
) # TODO: None soon to be removed
if old_state_value is None:
raise KeyError(
f"clip_value is set to {self.clip_value}, but "
f"the key {self.tensor_keys.value} was not found in the input tensordict. "
f"Make sure that the value_key passed to A2C exists in the input tensordict."
)
old_state_value = old_state_value.clone()
# TODO: if the advantage is gathered by forward, this introduces an
# overhead that we could easily reduce.
target_return = tensordict.get(
self.tensor_keys.value_target, None
) # TODO: None soon to be removed
if target_return is None:
raise KeyError(
f"the key {self.tensor_keys.value_target} was not found in the input tensordict. "
f"Make sure you provided the right key and the value_target (i.e. the target "
f"return) has been retrieved accordingly. Advantage classes such as GAE, "
f"TDLambdaEstimate and TDEstimate all return a 'value_target' entry that "
f"can be used for the value loss."
)
tensordict_select = tensordict.select(
*self.critic_network.in_keys, strict=False
)
with self.critic_network_params.to_module(
self.critic_network
) if self.functional else contextlib.nullcontext():
state_value = self.critic_network(
tensordict_select,
).get(self.tensor_keys.value)
loss_value = distance_loss(
target_return,
state_value,
loss_function=self.loss_critic_type,
)
clip_fraction = None
if self.clip_value:
loss_value, clip_fraction = _clip_value_loss(
old_state_value,
state_value,
self.clip_value,
target_return,
loss_value,
self.loss_critic_type,
)
if self.critic_coef is not None:
return self.critic_coef * loss_value, clip_fraction
return loss_value, clip_fraction
@property
@_cache_values
def _cached_detach_critic_network_params(self):
if not self.functional:
return None
return self.critic_network_params.detach()
@dispatch()
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
tensordict = tensordict.clone(False)
advantage = tensordict.get(self.tensor_keys.advantage, None)
if advantage is None:
self.value_estimator(
tensordict,
params=self._cached_detach_critic_network_params,
target_params=self.target_critic_network_params,
)
advantage = tensordict.get(self.tensor_keys.advantage)
log_probs, dist = self._log_probs(tensordict)
loss = -(log_probs * advantage)
td_out = TensorDict({"loss_objective": loss}, batch_size=[])
if self.entropy_bonus:
entropy = self.get_entropy_bonus(dist)
td_out.set("entropy", entropy.detach().mean()) # for logging
td_out.set("loss_entropy", -self.entropy_coef * entropy)
if self.critic_coef is not None:
loss_critic, value_clip_fraction = self.loss_critic(tensordict)
td_out.set("loss_critic", loss_critic)
if value_clip_fraction is not None:
td_out.set("value_clip_fraction", value_clip_fraction)
td_out = td_out.named_apply(
lambda name, value: _reduce(value, reduction=self.reduction).squeeze(-1)
if name.startswith("loss_")
else value,
batch_size=[],
)
return td_out
def make_value_estimator(self, value_type: ValueEstimators = None, **hyperparams):
if value_type is None:
value_type = self.default_value_estimator
self.value_type = value_type
hp = dict(default_value_kwargs(value_type))
hp.update(hyperparams)
device = _get_default_device(self)
hp["device"] = device
if hasattr(self, "gamma"):
hp["gamma"] = self.gamma
if value_type == ValueEstimators.TD1:
self._value_estimator = TD1Estimator(
value_network=self.critic_network, **hp
)
elif value_type == ValueEstimators.TD0:
self._value_estimator = TD0Estimator(
value_network=self.critic_network, **hp
)
elif value_type == ValueEstimators.GAE:
self._value_estimator = GAE(value_network=self.critic_network, **hp)
elif value_type == ValueEstimators.TDLambda:
self._value_estimator = TDLambdaEstimator(
value_network=self.critic_network, **hp
)
elif value_type == ValueEstimators.VTrace:
# VTrace currently does not support functional call on the actor
if self.functional:
actor_with_params = deepcopy(self.actor_network)
self.actor_network_params.to_module(actor_with_params)
else:
actor_with_params = self.actor_network
self._value_estimator = VTrace(
value_network=self.critic_network, actor_network=actor_with_params, **hp
)
else:
raise NotImplementedError(f"Unknown value type {value_type}")
tensor_keys = {
"advantage": self.tensor_keys.advantage,
"value": self.tensor_keys.value,
"value_target": self.tensor_keys.value_target,
"reward": self.tensor_keys.reward,
"done": self.tensor_keys.done,
"terminated": self.tensor_keys.terminated,
"sample_log_prob": self.tensor_keys.sample_log_prob,
}
self._value_estimator.set_keys(**tensor_keys)