-
Notifications
You must be signed in to change notification settings - Fork 328
/
Copy pathdecision_transformer.py
180 lines (151 loc) · 6.47 KB
/
decision_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import dataclasses
import importlib
from contextlib import nullcontext
from dataclasses import dataclass
from typing import Any
import torch
import torch.nn as nn
_has_transformers = importlib.util.find_spec("transformers") is not None
class DecisionTransformer(nn.Module):
"""Online Decion Transformer.
Desdescribed in https://arxiv.org/abs/2202.05607 .
The transformer utilizes a default config to create the GPT2 model if the user does not provide a specific config.
default_config = {
... "n_embd": 256,
... "n_layer": 4,
... "n_head": 4,
... "n_inner": 1024,
... "activation": "relu",
... "n_positions": 1024,
... "resid_pdrop": 0.1,
... "attn_pdrop": 0.1,
}
Args:
state_dim (int): dimension of the state space
action_dim (int): dimension of the action space
config (:obj:`~.DTConfig` or dict, optional): transformer architecture configuration,
used to create the GPT2Config from transformers.
Defaults to :obj:`~.default_config`.
Example:
>>> config = DecisionTransformer.default_config()
>>> config.n_embd = 128
>>> print(config)
DTConfig(n_embd: 128, n_layer: 4, n_head: 4, n_inner: 1024, activation: relu, n_positions: 1024, resid_pdrop: 0.1, attn_pdrop: 0.1)
>>> # alternatively
>>> config = DecisionTransformer.DTConfig(n_embd=128)
>>> model = DecisionTransformer(state_dim=4, action_dim=2, config=config)
>>> batch_size = [3, 32]
>>> length = 10
>>> observation = torch.randn(*batch_size, length, 4)
>>> action = torch.randn(*batch_size, length, 2)
>>> return_to_go = torch.randn(*batch_size, length, 1)
>>> output = model(observation, action, return_to_go)
>>> output.shape
torch.Size([3, 32, 10, 128])
"""
@dataclass
class DTConfig:
"""Default configuration for DecisionTransformer."""
n_embd: Any = 256
n_layer: Any = 4
n_head: Any = 4
n_inner: Any = 1024
activation: Any = "relu"
n_positions: Any = 1024
resid_pdrop: Any = 0.1
attn_pdrop: Any = 0.1
def __repr__(self):
fields = []
for f in dataclasses.fields(self):
value = getattr(self, f.name)
fields.append(f"{f.name}: {value}")
fields = ", ".join(fields)
return f"{self.__class__.__name__}({fields})"
@classmethod
def default_config(cls):
return cls.DTConfig()
def __init__(
self,
state_dim,
action_dim,
config: dict | DTConfig = None,
device: torch.device | None = None,
):
if not _has_transformers:
raise ImportError(
"transformers is not installed. Please install it with `pip install transformers`."
)
import transformers
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
if config is None:
config = self.default_config()
if isinstance(config, self.DTConfig):
config = dataclasses.asdict(config)
if not isinstance(config, dict):
try:
config = dict(config)
except Exception as err:
raise TypeError(
f"Config of type {type(config)} is not supported."
) from err
super(DecisionTransformer, self).__init__()
with torch.device(device) if device is not None else nullcontext():
gpt_config = transformers.GPT2Config(
n_embd=config["n_embd"],
n_layer=config["n_layer"],
n_head=config["n_head"],
n_inner=config["n_inner"],
activation_function=config["activation"],
n_positions=config["n_positions"],
resid_pdrop=config["resid_pdrop"],
attn_pdrop=config["attn_pdrop"],
vocab_size=1,
)
self.state_dim = state_dim
self.action_dim = action_dim
self.hidden_size = config["n_embd"]
self.transformer = GPT2Model(config=gpt_config)
self.embed_return = torch.nn.Linear(1, self.hidden_size)
self.embed_state = torch.nn.Linear(self.state_dim, self.hidden_size)
self.embed_action = torch.nn.Linear(self.action_dim, self.hidden_size)
self.embed_ln = nn.LayerNorm(self.hidden_size)
def forward(
self,
observation: torch.Tensor,
action: torch.Tensor,
return_to_go: torch.Tensor,
):
batch_size, seq_length = observation.shape[:-2], observation.shape[-2]
batch_size_orig = batch_size
if len(batch_size) != 1:
# TODO: vmap over transformer once this is possible
observation = observation.view(-1, *observation.shape[-2:])
action = action.view(-1, *action.shape[-2:])
return_to_go = return_to_go.view(-1, *return_to_go.shape[-2:])
batch_size = torch.Size([batch_size.numel()])
# embed each modality with a different head
state_embeddings = self.embed_state(observation)
action_embeddings = self.embed_action(action)
returns_embeddings = self.embed_return(return_to_go)
# this makes the sequence look like (R_1, s_1, a_1, R_2, s_2, a_2, ...)
# which works nice in an autoregressive sense since states predict actions
stacked_inputs = torch.stack(
(returns_embeddings, state_embeddings, action_embeddings), dim=-2
).reshape(*batch_size, 3 * seq_length, self.hidden_size)
stacked_inputs = self.embed_ln(stacked_inputs)
# we feed in the input embeddings (not word indices as in NLP) to the model
transformer_outputs = self.transformer(
inputs_embeds=stacked_inputs,
)
x = transformer_outputs["last_hidden_state"]
# reshape x so that the second dimension corresponds to the original
# returns (0), states (1), or actions (2); i.e. x[:,1,t] is the token for s_t
x = x.reshape(*batch_size, seq_length, 3, self.hidden_size).transpose(-3, -2)
if batch_size_orig is batch_size:
return x[..., 1, :, :] # only state tokens
return x[..., 1, :, :].reshape(*batch_size_orig, *x.shape[-2:])