-
Notifications
You must be signed in to change notification settings - Fork 331
/
Copy pathtruncated_normal.py
187 lines (153 loc) · 5.88 KB
/
truncated_normal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# from https://github.com/toshas/torch_truncnorm
import math
from numbers import Number
import torch
from torch.distributions import constraints, Distribution
from torch.distributions.utils import broadcast_all
CONST_SQRT_2 = math.sqrt(2)
CONST_INV_SQRT_2PI = 1 / math.sqrt(2 * math.pi)
CONST_INV_SQRT_2 = 1 / math.sqrt(2)
CONST_LOG_INV_SQRT_2PI = math.log(CONST_INV_SQRT_2PI)
CONST_LOG_SQRT_2PI_E = 0.5 * math.log(2 * math.pi * math.e)
class TruncatedStandardNormal(Distribution):
"""Truncated Standard Normal distribution.
Source: https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
"""
arg_constraints = {
"a": constraints.real,
"b": constraints.real,
}
has_rsample = True
eps = 1e-6
def __init__(self, a, b, validate_args=None, device=None):
self.a, self.b = broadcast_all(a, b)
self.a = self.a.to(device)
self.b = self.b.to(device)
if isinstance(a, Number) and isinstance(b, Number):
batch_shape = torch.Size()
else:
batch_shape = self.a.size()
super(TruncatedStandardNormal, self).__init__(
batch_shape, validate_args=validate_args
)
if self.a.dtype != self.b.dtype:
raise ValueError("Truncation bounds types are different")
if any(
(self.a >= self.b)
.view(
-1,
)
.tolist()
):
raise ValueError("Incorrect truncation range")
eps = self.eps
self._dtype_min_gt_0 = eps
self._dtype_max_lt_1 = 1 - eps
self._little_phi_a = self._little_phi(self.a)
self._little_phi_b = self._little_phi(self.b)
self._big_phi_a = self._big_phi(self.a)
self._big_phi_b = self._big_phi(self.b)
self._Z = (self._big_phi_b - self._big_phi_a).clamp(eps, 1 - eps)
self._log_Z = self._Z.log()
little_phi_coeff_a = torch.nan_to_num(self.a, nan=math.nan)
little_phi_coeff_b = torch.nan_to_num(self.b, nan=math.nan)
self._lpbb_m_lpaa_d_Z = (
self._little_phi_b * little_phi_coeff_b
- self._little_phi_a * little_phi_coeff_a
) / self._Z
self._mean = -(self._little_phi_b - self._little_phi_a) / self._Z
self._variance = (
1
- self._lpbb_m_lpaa_d_Z
- ((self._little_phi_b - self._little_phi_a) / self._Z) ** 2
)
self._entropy = CONST_LOG_SQRT_2PI_E + self._log_Z - 0.5 * self._lpbb_m_lpaa_d_Z
@constraints.dependent_property
def support(self):
return constraints.interval(self.a, self.b)
@property
def mean(self):
return self._mean
@property
def deterministic_sample(self):
return self.mean
@property
def variance(self):
return self._variance
def entropy(self):
return self._entropy
@property
def auc(self):
return self._Z
@staticmethod
def _little_phi(x):
return (-(x**2) * 0.5).exp() * CONST_INV_SQRT_2PI
def _big_phi(self, x):
phi = 0.5 * (1 + (x * CONST_INV_SQRT_2).erf())
return phi.clamp(self.eps, 1 - self.eps)
@staticmethod
def _inv_big_phi(x):
return CONST_SQRT_2 * (2 * x - 1).erfinv()
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return ((self._big_phi(value) - self._big_phi_a) / self._Z).clamp(0, 1)
def icdf(self, value):
y = self._big_phi_a + value * self._Z
y = y.clamp(self.eps, 1 - self.eps)
return self._inv_big_phi(y)
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return CONST_LOG_INV_SQRT_2PI - self._log_Z - (value**2) * 0.5
def rsample(self, sample_shape=None):
if sample_shape is None:
sample_shape = torch.Size([])
shape = self._extended_shape(sample_shape)
p = torch.empty(shape, device=self.a.device).uniform_(
self._dtype_min_gt_0, self._dtype_max_lt_1
)
return self.icdf(p)
class TruncatedNormal(TruncatedStandardNormal):
"""Truncated Normal distribution.
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
"""
has_rsample = True
def __init__(self, loc, scale, a, b, validate_args=None, device=None):
scale = scale.clamp_min(self.eps)
self.loc, self.scale, a, b = broadcast_all(loc, scale, a, b)
a = a.to(device)
b = b.to(device)
self._non_std_a = a
self._non_std_b = b
a = (a - self.loc) / self.scale
b = (b - self.loc) / self.scale
super(TruncatedNormal, self).__init__(a, b, validate_args=validate_args)
self._log_scale = self.scale.log()
self._mean = self._mean * self.scale + self.loc
self._variance = self._variance * self.scale**2
self._entropy += self._log_scale
def _to_std_rv(self, value):
return (value - self.loc) / self.scale
def _from_std_rv(self, value):
return value * self.scale + self.loc
def cdf(self, value):
return super(TruncatedNormal, self).cdf(self._to_std_rv(value))
def icdf(self, value):
sample = self._from_std_rv(super().icdf(value))
# clamp data but keep gradients
sample_clip = torch.stack(
[sample.detach(), self._non_std_a.detach().expand_as(sample)], 0
).max(0)[0]
sample_clip = torch.stack(
[sample_clip, self._non_std_b.detach().expand_as(sample)], 0
).min(0)[0]
sample.data.copy_(sample_clip)
return sample
def log_prob(self, value):
value = self._to_std_rv(value)
return super(TruncatedNormal, self).log_prob(value) - self._log_scale