-
Notifications
You must be signed in to change notification settings - Fork 328
/
Copy pathatari_dqn.py
869 lines (814 loc) · 39.4 KB
/
atari_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import functools
import gzip
import io
import json
import os
import shutil
import subprocess
import tempfile
from collections import defaultdict
from pathlib import Path
from typing import Callable
import numpy as np
import torch
from tensordict import MemoryMappedTensor, TensorDict, TensorDictBase
from torch import multiprocessing as mp
from torchrl._utils import logger as torchrl_logger
from torchrl.data.datasets.common import BaseDatasetExperienceReplay
from torchrl.data.replay_buffers.samplers import (
SamplerWithoutReplacement,
SliceSampler,
SliceSamplerWithoutReplacement,
)
from torchrl.data.replay_buffers.storages import Storage, TensorStorage
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter
from torchrl.data.utils import CloudpickleWrapper
from torchrl.envs.utils import _classproperty
class AtariDQNExperienceReplay(BaseDatasetExperienceReplay):
"""Atari DQN Experience replay class.
The Atari DQN dataset (https://offline-rl.github.io/) is a collection of 5 training
iterations of DQN over each of the Arari 2600 games for a total of 200 million frames.
The sub-sampling rate (frame-skip) is equal to 4, meaning that each game dataset
has 50 million steps in total.
The data format follows the :ref:`TED convention <TED-format>`. Since the dataset is quite heavy,
the data formatting is done on-line, at sampling time.
To make training more modular, we split the dataset in each of the Atari games
and separate each training round. Consequently, each dataset is presented as
a Storage of length 50x10^6 elements. Under the hood, this dataset is split
in 50 memory-mapped tensordicts of length 1 million each.
Args:
dataset_id (str): The dataset to be downloaded.
Must be part of ``AtariDQNExperienceReplay.available_datasets``.
batch_size (int): Batch-size used during sampling.
Can be overridden by `data.sample(batch_size)` if necessary.
Keyword Args:
root (Path or str, optional): The AtariDQN dataset root directory.
The actual dataset memory-mapped files will be saved under
`<root>/<dataset_id>`. If none is provided, it defaults to
``~/.cache/torchrl/atari`.
num_procs (int, optional): number of processes to launch for preprocessing.
Has no effect whenever the data is already downloaded. Defaults to 0
(no multiprocessing used).
download (bool or str, optional): Whether the dataset should be downloaded if
not found. Defaults to ``True``. Download can also be passed as ``"force"``,
in which case the downloaded data will be overwritten.
sampler (Sampler, optional): the sampler to be used. If none is provided
a default RandomSampler() will be used.
writer (Writer, optional): the writer to be used. If none is provided
a default :class:`~torchrl.data.replay_buffers.writers.ImmutableDatasetWriter` will be used.
collate_fn (callable, optional): merges a list of samples to form a
mini-batch of Tensor(s)/outputs. Used when using batched
loading from a map-style dataset.
pin_memory (bool): whether pin_memory() should be called on the rb
samples.
prefetch (int, optional): number of next batches to be prefetched
using multithreading.
transform (Transform, optional): Transform to be executed when sample() is called.
To chain transforms use the :class:`~torchrl.envs.transforms.transforms.Compose` class.
num_slices (int, optional): the number of slices to be sampled. The batch-size
must be greater or equal to the ``num_slices`` argument. Exclusive
with ``slice_len``. Defaults to ``None`` (no slice sampling).
The ``sampler`` arg will override this value.
slice_len (int, optional): the length of the slices to be sampled. The batch-size
must be greater or equal to the ``slice_len`` argument and divisible
by it. Exclusive with ``num_slices``. Defaults to ``None`` (no slice sampling).
The ``sampler`` arg will override this value.
strict_length (bool, optional): if ``False``, trajectories of length
shorter than `slice_len` (or `batch_size // num_slices`) will be
allowed to appear in the batch.
Be mindful that this can result in effective `batch_size` shorter
than the one asked for! Trajectories can be split using
:func:`torchrl.collectors.split_trajectories`. Defaults to ``True``.
The ``sampler`` arg will override this value.
replacement (bool, optional): if ``False``, sampling will occur without replacement.
The ``sampler`` arg will override this value.
mp_start_method (str, optional): the start method for multiprocessed
download. Defaults to ``"fork"``.
Attributes:
available_datasets: list of available datasets, formatted as `<game_name>/<run>`. Example:
`"Pong/5"`, `"Krull/2"`, ...
dataset_id (str): the name of the dataset.
episodes (torch.Tensor): a 1d tensor indicating to what run each of the
1M frames belongs. To be used with :class:`~torchrl.data.replay_buffers.SliceSampler`
to cheaply sample slices of episodes.
Examples:
>>> from torchrl.data.datasets import AtariDQNExperienceReplay
>>> dataset = AtariDQNExperienceReplay("Pong/5", batch_size=128)
>>> for data in dataset:
... print(data)
... break
TensorDict(
fields={
action: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int32, is_shared=False),
done: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False),
index: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int64, is_shared=False),
metadata: NonTensorData(
data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Pong/5'}},
batch_size=torch.Size([128]),
device=None,
is_shared=False),
next: TensorDict(
fields={
done: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False),
observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
reward: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.float32, is_shared=False),
terminated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False),
truncated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False)},
batch_size=torch.Size([128]),
device=None,
is_shared=False),
observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
terminated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False),
truncated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False)},
batch_size=torch.Size([128]),
device=None,
is_shared=False)
.. warning::
Atari-DQN does not provide the next observation after a termination signal.
In other words, there is no way to obtain the ``("next", "observation")`` state
when ``("next", "done")`` is ``True``. This value is filled with 0s but should
not be used in practice. If TorchRL's value estimators (:class:`~torchrl.objectives.values.ValueEstimator`)
are used, this should not be an issue.
.. note::
Because the construction of the sampler for episode sampling is slightly
convoluted, we made it easy for users to pass the arguments of the
:class:`~torchrl.data.replay_buffers.SliceSampler` directly to the
``AtariDQNExperienceReplay`` dataset: any of the ``num_slices`` or
``slice_len`` arguments will make the sampler an instance of
:class:`~torchrl.data.replay_buffers.SliceSampler`. The ``strict_length``
can also be passed.
>>> from torchrl.data.datasets import AtariDQNExperienceReplay
>>> from torchrl.data.replay_buffers import SliceSampler
>>> dataset = AtariDQNExperienceReplay("Pong/5", batch_size=128, slice_len=64)
>>> for data in dataset:
... print(data)
... print(data.get("index")) # indices are in 4 groups of consecutive values
... break
TensorDict(
fields={
action: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int32, is_shared=False),
done: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False),
index: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.int64, is_shared=False),
metadata: NonTensorData(
data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Pong/5'}},
batch_size=torch.Size([128]),
device=None,
is_shared=False),
next: TensorDict(
fields={
done: Tensor(shape=torch.Size([128, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
reward: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.float32, is_shared=False),
terminated: Tensor(shape=torch.Size([128, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([128, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([128]),
device=None,
is_shared=False),
observation: Tensor(shape=torch.Size([128, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
terminated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False),
truncated: Tensor(shape=torch.Size([128]), device=cpu, dtype=torch.uint8, is_shared=False)},
batch_size=torch.Size([128]),
device=None,
is_shared=False)
tensor([2657628, 2657629, 2657630, 2657631, 2657632, 2657633, 2657634, 2657635,
2657636, 2657637, 2657638, 2657639, 2657640, 2657641, 2657642, 2657643,
2657644, 2657645, 2657646, 2657647, 2657648, 2657649, 2657650, 2657651,
2657652, 2657653, 2657654, 2657655, 2657656, 2657657, 2657658, 2657659,
2657660, 2657661, 2657662, 2657663, 2657664, 2657665, 2657666, 2657667,
2657668, 2657669, 2657670, 2657671, 2657672, 2657673, 2657674, 2657675,
2657676, 2657677, 2657678, 2657679, 2657680, 2657681, 2657682, 2657683,
2657684, 2657685, 2657686, 2657687, 2657688, 2657689, 2657690, 2657691,
1995687, 1995688, 1995689, 1995690, 1995691, 1995692, 1995693, 1995694,
1995695, 1995696, 1995697, 1995698, 1995699, 1995700, 1995701, 1995702,
1995703, 1995704, 1995705, 1995706, 1995707, 1995708, 1995709, 1995710,
1995711, 1995712, 1995713, 1995714, 1995715, 1995716, 1995717, 1995718,
1995719, 1995720, 1995721, 1995722, 1995723, 1995724, 1995725, 1995726,
1995727, 1995728, 1995729, 1995730, 1995731, 1995732, 1995733, 1995734,
1995735, 1995736, 1995737, 1995738, 1995739, 1995740, 1995741, 1995742,
1995743, 1995744, 1995745, 1995746, 1995747, 1995748, 1995749, 1995750])
.. note::
As always, datasets should be composed using :class:`~torchrl.data.replay_buffers.ReplayBufferEnsemble`:
>>> from torchrl.data.datasets import AtariDQNExperienceReplay
>>> from torchrl.data.replay_buffers import ReplayBufferEnsemble
>>> # we change this parameter for quick experimentation, in practice it should be left untouched
>>> AtariDQNExperienceReplay._max_runs = 2
>>> dataset_asterix = AtariDQNExperienceReplay("Asterix/5", batch_size=128, slice_len=64, num_procs=4)
>>> dataset_pong = AtariDQNExperienceReplay("Pong/5", batch_size=128, slice_len=64, num_procs=4)
>>> dataset = ReplayBufferEnsemble(dataset_pong, dataset_asterix, batch_size=128, sample_from_all=True)
>>> sample = dataset.sample()
>>> print("first sample, Asterix", sample[0])
first sample, Asterix TensorDict(
fields={
action: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int32, is_shared=False),
done: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False),
index: TensorDict(
fields={
buffer_ids: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False),
index: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False)},
batch_size=torch.Size([64]),
device=None,
is_shared=False),
metadata: NonTensorData(
data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Pong/5'},
batch_size=torch.Size([64]),
device=None,
is_shared=False),
next: TensorDict(
fields={
done: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
reward: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.float32, is_shared=False),
terminated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([64]),
device=None,
is_shared=False),
observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
terminated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False),
truncated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False)},
batch_size=torch.Size([64]),
device=None,
is_shared=False)
>>> print("second sample, Pong", sample[1])
second sample, Pong TensorDict(
fields={
action: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int32, is_shared=False),
done: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False),
index: TensorDict(
fields={
buffer_ids: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False),
index: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.int64, is_shared=False)},
batch_size=torch.Size([64]),
device=None,
is_shared=False),
metadata: NonTensorData(
data={'invalid_range': MemoryMappedTensor([999998, 999999, 0, 1, 2]), 'add_count': MemoryMappedTensor(999999), 'dataset_id': 'Asterix/5'},
batch_size=torch.Size([64]),
device=None,
is_shared=False),
next: TensorDict(
fields={
done: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
reward: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.float32, is_shared=False),
terminated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([64, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([64]),
device=None,
is_shared=False),
observation: Tensor(shape=torch.Size([64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
terminated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False),
truncated: Tensor(shape=torch.Size([64]), device=cpu, dtype=torch.uint8, is_shared=False)},
batch_size=torch.Size([64]),
device=None,
is_shared=False)
>>> print("Aggregate (metadata hidden)", sample)
Aggregate (metadata hidden) LazyStackedTensorDict(
fields={
action: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.int32, is_shared=False),
done: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.uint8, is_shared=False),
index: LazyStackedTensorDict(
fields={
buffer_ids: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.int64, is_shared=False),
index: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.int64, is_shared=False)},
exclusive_fields={
},
batch_size=torch.Size([2, 64]),
device=None,
is_shared=False,
stack_dim=0),
metadata: LazyStackedTensorDict(
fields={
},
exclusive_fields={
},
batch_size=torch.Size([2, 64]),
device=None,
is_shared=False,
stack_dim=0),
next: LazyStackedTensorDict(
fields={
done: Tensor(shape=torch.Size([2, 64, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: Tensor(shape=torch.Size([2, 64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
reward: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.float32, is_shared=False),
terminated: Tensor(shape=torch.Size([2, 64, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([2, 64, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
exclusive_fields={
},
batch_size=torch.Size([2, 64]),
device=None,
is_shared=False,
stack_dim=0),
observation: Tensor(shape=torch.Size([2, 64, 84, 84]), device=cpu, dtype=torch.uint8, is_shared=False),
terminated: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.uint8, is_shared=False),
truncated: Tensor(shape=torch.Size([2, 64]), device=cpu, dtype=torch.uint8, is_shared=False)},
exclusive_fields={
},
batch_size=torch.Size([2, 64]),
device=None,
is_shared=False,
stack_dim=0)
"""
@_classproperty
def available_datasets(cls):
games = [
"AirRaid",
"Alien",
"Amidar",
"Assault",
"Asterix",
"Asteroids",
"Atlantis",
"BankHeist",
"BattleZone",
"BeamRider",
"Berzerk",
"Bowling",
"Boxing",
"Breakout",
"Carnival",
"Centipede",
"ChopperCommand",
"CrazyClimber",
"DemonAttack",
"DoubleDunk",
"ElevatorAction",
"Enduro",
"FishingDerby",
"Freeway",
"Frostbite",
"Gopher",
"Gravitar",
"Hero",
"IceHockey",
"Jamesbond",
"JourneyEscape",
"Kangaroo",
"Krull",
"KungFuMaster",
"MontezumaRevenge",
"MsPacman",
"NameThisGame",
"Phoenix",
"Pitfall",
"Pong",
"Pooyan",
"PrivateEye",
"Qbert",
"Riverraid",
"RoadRunner",
"Robotank",
"Seaquest",
"Skiing",
"Solaris",
"SpaceInvaders",
]
return ["/".join((game, str(loop))) for game in games for loop in range(1, 6)]
# If we want to keep track of the original atari files
tmpdir = None
# use _max_runs for debugging, avoids downloading the entire dataset
_max_runs = None
def __init__(
self,
dataset_id: str,
batch_size: int | None = None,
*,
root: str | Path | None = None,
download: bool | str = True,
sampler=None,
writer=None,
transform: "Transform" | None = None, # noqa: F821
num_procs: int = 0,
num_slices: int | None = None,
slice_len: int | None = None,
strict_len: bool = True,
replacement: bool = True,
mp_start_method: str = "fork",
**kwargs,
):
if dataset_id not in self.available_datasets:
raise ValueError(
"The dataseet_id is not part of the available datasets. The dataset should be named <game_name>/<run> "
"where <game_name> is one of the Atari 2600 games and the run is a number betweeen 1 and 5. "
"The full list of accepted dataset_ids is available under AtariDQNExperienceReplay.available_datasets."
)
self.dataset_id = dataset_id
from torchrl.data.datasets.utils import _get_root_dir
if root is None:
root = _get_root_dir("atari")
self.root = root
self.num_procs = num_procs
self.mp_start_method = mp_start_method
if download == "force" or (download and not self._is_downloaded):
try:
self._download_and_preproc()
except Exception:
# remove temporary data
if os.path.exists(self.dataset_path):
shutil.rmtree(self.dataset_path)
raise
if self._downloaded_and_preproc:
storage = TensorStorage(TensorDict.load_memmap(self.dataset_path))
else:
storage = _AtariStorage(self.dataset_path)
if writer is None:
writer = ImmutableDatasetWriter()
if sampler is None:
if num_slices is not None or slice_len is not None:
if not replacement:
sampler = SliceSamplerWithoutReplacement(
num_slices=num_slices,
slice_len=slice_len,
trajectories=storage.episodes,
)
else:
sampler = SliceSampler(
num_slices=num_slices,
slice_len=slice_len,
trajectories=storage.episodes,
cache_values=True,
)
elif not replacement:
sampler = SamplerWithoutReplacement()
super().__init__(
storage=storage,
batch_size=batch_size,
writer=writer,
sampler=sampler,
collate_fn=lambda x: x,
transform=transform,
**kwargs,
)
@property
def episodes(self):
return self._storage.episodes
@property
def root(self) -> Path:
return self._root
@root.setter
def root(self, value):
self._root = Path(value)
@property
def dataset_path(self) -> Path:
return self._root / self.dataset_id
@property
def _downloaded_and_preproc(self):
return os.path.exists(self.dataset_path / "meta.json")
@property
def _is_downloaded(self):
if os.path.exists(self.dataset_path / "meta.json"):
return True
if os.path.exists(self.dataset_path / "processed.json"):
with open(self.dataset_path / "processed.json", "r") as jsonfile:
return json.load(jsonfile).get("processed", False) == self._max_runs
return False
def _download_and_preproc(self):
torchrl_logger.info(
f"Downloading and preprocessing dataset {self.dataset_id} with {self.num_procs} processes. This may take a while..."
)
if os.path.exists(self.dataset_path):
shutil.rmtree(self.dataset_path)
with tempfile.TemporaryDirectory() as tempdir:
if self.tmpdir is not None:
tempdir = self.tmpdir
if not os.listdir(tempdir):
os.makedirs(tempdir, exist_ok=True)
# get the list of runs
command = f"gsutil -m ls -R gs://atari-replay-datasets/dqn/{self.dataset_id}/replay_logs"
output = subprocess.run(
command, shell=True, capture_output=True
) # , stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
files = [
file.decode("utf-8").replace("$", "\$") # noqa: W605
for file in output.stdout.splitlines()
if file.endswith(b".gz")
]
self.remote_gz_files = self._list_runs(None, files)
remote_gz_files = list(self.remote_gz_files)
if not len(remote_gz_files):
raise RuntimeError(
"Could not load the file list. Did you install gsutil?"
)
total_runs = remote_gz_files[-1]
if self.num_procs == 0:
for run, run_files in self.remote_gz_files.items():
self._download_and_proc_split(
run,
run_files,
tempdir=tempdir,
dataset_path=self.dataset_path,
total_episodes=total_runs,
max_runs=self._max_runs,
multithreaded=True,
)
else:
func = functools.partial(
self._download_and_proc_split,
tempdir=tempdir,
dataset_path=self.dataset_path,
total_episodes=total_runs,
max_runs=self._max_runs,
multithreaded=False,
)
args = [
(run, run_files)
for (run, run_files) in self.remote_gz_files.items()
]
ctx = mp.get_context(self.mp_start_method)
with ctx.Pool(self.num_procs) as pool:
pool.starmap(func, args)
with open(self.dataset_path / "processed.json", "w") as file:
# we save self._max_runs such that changing the number of runs to process
# forces the data to be re-downloaded
json.dump({"processed": self._max_runs}, file)
@classmethod
def _download_and_proc_split(
cls,
run,
run_files,
*,
tempdir,
dataset_path,
total_episodes,
max_runs,
multithreaded=True,
):
if (max_runs is not None) and (run >= max_runs):
return
tempdir = Path(tempdir)
os.makedirs(tempdir / str(run))
files_str = " ".join(run_files) # .decode("utf-8")
torchrl_logger.info(f"downloading {files_str}")
if multithreaded:
command = f"gsutil -m cp {files_str} {tempdir}/{run}"
else:
command = f"gsutil cp {files_str} {tempdir}/{run}"
subprocess.run(
command, shell=True
) # , stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
local_gz_files = cls._list_runs(tempdir / str(run))
# we iterate over the dict but this one has length 1
for run in local_gz_files:
path = dataset_path / str(run)
try:
cls._preproc_run(path, local_gz_files, run)
except Exception:
shutil.rmtree(path)
raise
shutil.rmtree(tempdir / str(run))
torchrl_logger.info(f"Concluded run {run} out of {total_episodes}")
@classmethod
def _preproc_run(cls, path, gz_files, run):
files = gz_files[run]
td = TensorDict()
path = Path(path)
for file in files:
name = str(Path(file).parts[-1]).split(".")[0]
with gzip.GzipFile(file, mode="rb") as f:
file_content = f.read()
file_content = io.BytesIO(file_content)
file_content = np.load(file_content)
t = torch.as_tensor(file_content)
# Create the memmap file
key = cls._process_name(name)
if key == ("data", "observation"):
shape = t.shape
shape = [shape[0] + 1] + list(shape[1:])
filename = path / "data" / "observation.memmap"
os.makedirs(filename.parent, exist_ok=True)
mmap = MemoryMappedTensor.empty(shape, dtype=t.dtype, filename=filename)
mmap[:-1].copy_(t)
td[key] = mmap
# td["data", "next", key[1:]] = mmap[1:]
else:
if key in (
("data", "reward"),
("data", "done"),
("data", "terminated"),
):
filename = path / "data" / "next" / (key[-1] + ".memmap")
os.makedirs(filename.parent, exist_ok=True)
mmap = MemoryMappedTensor.from_tensor(t, filename=filename)
td["data", "next", key[1:]] = mmap
else:
filename = path
for i, _key in enumerate(key):
if i == len(key) - 1:
_key = _key + ".memmap"
filename = filename / _key
os.makedirs(filename.parent, exist_ok=True)
mmap = MemoryMappedTensor.from_tensor(t, filename=filename)
td[key] = mmap
td.set_non_tensor("dataset_id", "/".join(path.parts[-3:-1]))
td.memmap_(path, copy_existing=False)
@staticmethod
def _process_name(name):
if name.endswith("_ckpt"):
name = name[:-5]
if "store" in name:
key = ("data", name.split("_")[1])
else:
key = (name,)
if key[-1] == "terminal":
key = (*key[:-1], "terminated")
return key
@classmethod
def _list_runs(cls, download_path, gz_files=None) -> dict:
path = download_path
if gz_files is None:
gz_files = []
for root, _, files in os.walk(path):
for file in files:
if file.endswith(".gz"):
gz_files.append(os.path.join(root, file))
runs = defaultdict(list)
for file in gz_files:
filename = Path(file).parts[-1]
name, episode, extension = str(filename).split(".")
episode = int(episode)
runs[episode].append(file)
return dict(sorted(runs.items(), key=lambda x: x[0]))
def preprocess(
self,
fn: Callable[[TensorDictBase], TensorDictBase],
dim: int = 0,
num_workers: int | None = None,
*,
chunksize: int | None = None,
num_chunks: int | None = None,
pool: mp.Pool | None = None,
generator: torch.Generator | None = None,
max_tasks_per_child: int | None = None,
worker_threads: int = 1,
index_with_generator: bool = False,
pbar: bool = False,
mp_start_method: str | None = None,
dest: str | Path,
num_frames: int | None = None,
):
# Copy data to a tensordict
with tempfile.TemporaryDirectory() as tmpdir:
first_item = self[0]
metadata = first_item.pop("metadata")
mmap = fn(first_item)
if num_frames is None:
num_frames = len(self)
mmap = mmap.expand(num_frames, *first_item.shape)
mmap = mmap.memmap_like(tmpdir, num_threads=32)
with mmap.unlock_():
mmap["_indices"] = torch.arange(mmap.shape[0])
mmap.memmap_(tmpdir, num_threads=32)
def func(mmap: TensorDictBase):
idx = mmap["_indices"]
orig = self[idx].exclude("metadata")
orig = fn(orig)
mmap.update(orig, inplace=True)
return
if dim != 0:
raise RuntimeError("dim != 0 is not supported.")
mmap.map(
fn=CloudpickleWrapper(func),
dim=dim,
num_workers=num_workers,
chunksize=chunksize,
num_chunks=num_chunks,
pool=pool,
generator=generator,
max_tasks_per_child=max_tasks_per_child,
worker_threads=worker_threads,
index_with_generator=index_with_generator,
mp_start_method=mp_start_method,
pbar=pbar,
)
with mmap.unlock_():
return TensorStorage(mmap.set("metadata", metadata))
class _AtariStorage(Storage):
def __init__(self, path):
self.path = Path(path)
def get_folders(path):
return [
name
for name in os.listdir(path)
if os.path.isdir(os.path.join(path, name))
]
# Usage
self.splits = []
folders = get_folders(path)
for folder in folders:
self.splits.append(int(Path(folder).parts[-1]))
self.splits = sorted(self.splits)
self._split_tds = []
frames_per_split = {}
for split in self.splits:
path = self.path / str(split)
self._split_tds.append(self._load_split(path))
# take away 1 because we padded with 1 empty val
frames_per_split[split] = (
self._split_tds[-1].get(("data", "observation")).shape[0] - 1
)
frames_per_split = torch.tensor(
[[split, length] for (split, length) in frames_per_split.items()]
)
frames_per_split[:, 1] = frames_per_split[:, 1].cumsum(0)
self.frames_per_split = torch.cat(
# [torch.tensor([[-1, 0]]), frames_per_split], 0
[torch.tensor([[-1, 0]]), frames_per_split],
0,
)
# retrieve episodes
self.episodes = torch.cumsum(
torch.cat(
[td.get(("data", "next", "terminated")) for td in self._split_tds], 0
),
0,
)
super().__init__(max_size=len(self))
def __len__(self):
return self.frames_per_split[-1, 1].item()
def _read_from_splits(self, item: int | torch.Tensor):
# We need to allocate each item to its storage.
# We don't assume each storage has the same size (too expensive to test)
# so we keep a map of each storage cumulative length and retrieve the
# storages one after the other.
item = torch.as_tensor(item)
if not item.ndim:
is_int = True
item = item.reshape(-1)
else:
is_int = False
split = (item < self.frames_per_split[1:, 1].unsqueeze(1)) & (
item >= self.frames_per_split[:-1, 1].unsqueeze(1)
)
# split_tmp, idx = split.squeeze().nonzero().unbind(-1)
split_tmp, idx = split.nonzero().unbind(-1)
split = split_tmp.squeeze()
idx = idx.squeeze()
if not is_int:
split = torch.zeros_like(split_tmp)
split[idx] = split_tmp
split = self.frames_per_split[split + 1, 0]
item = item - self.frames_per_split[split, 1]
if is_int:
item = item.squeeze()
return self._proc_td(self._split_tds[split], item)
unique_splits, split_inverse = torch.unique(split, return_inverse=True)
unique_splits = unique_splits.tolist()
out = []
for i, split in enumerate(unique_splits):
_item = item[split_inverse == i] if split_inverse is not None else item
out.append(self._proc_td(self._split_tds[split], _item))
return torch.cat(out, 0)
def _load_split(self, path):
return TensorDict.load_memmap(path)
def _proc_td(self, td, index):
td_data = td.get("data")
obs_ = td_data.get(("observation"))[index + 1]
done = td_data.get(("next", "terminated"))[index].squeeze(-1).bool()
if done.ndim and done.any():
obs_ = torch.index_fill(obs_, 0, done.nonzero().squeeze(), 0)
td_idx = td.empty()
td_idx.set(("next", "observation"), obs_)
non_tensor = td.exclude("data").to_dict()
td_idx.update(td_data.apply(lambda x: x[index]))
if isinstance(index, torch.Tensor) and index.ndim:
td_idx.batch_size = [len(index)]
td_idx.set_non_tensor("metadata", non_tensor)
terminated = td_idx.get(("next", "terminated"))
zterminated = torch.zeros_like(terminated)
td_idx.set(("next", "done"), terminated.clone())
td_idx.set(("next", "truncated"), zterminated)
td_idx.set("terminated", zterminated)
td_idx.set("done", zterminated)
td_idx.set("truncated", zterminated)
return td_idx
def get(self, index):
if isinstance(index, int):
return self._read_from_splits(index)
if isinstance(index, tuple):
if len(index) == 1:
return self.get(index[0])
return self.get(index[0])[(Ellipsis, *index[1:])]
if isinstance(index, torch.Tensor):
if index.ndim <= 1:
return self._read_from_splits(index)
elif index.shape[1] == 1:
index = index.squeeze(1)
return self.get(index)
else:
raise RuntimeError("Only 1d tensors are accepted")
# with ThreadPoolExecutor(16) as pool:
# results = map(self.__getitem__, index.tolist())
# return torch.stack(list(results))
if isinstance(index, (range, list)):
return self[torch.tensor(index)]
if isinstance(index, slice):
start = index.start if index.start is not None else 0
stop = index.stop if index.stop is not None else len(self)
step = index.step if index.step is not None else 1
return self.get(torch.arange(start, stop, step))
return self[torch.arange(len(self))[index]]