-
Notifications
You must be signed in to change notification settings - Fork 328
/
test_rb.py
2957 lines (2678 loc) · 105 KB
/
test_rb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import contextlib
import functools
import importlib
import os
import pickle
import sys
from functools import partial
from unittest import mock
import numpy as np
import pytest
import torch
from _utils_internal import CARTPOLE_VERSIONED, get_default_devices, make_tc
from mocking_classes import CountingEnv
from packaging import version
from packaging.version import parse
from tensordict import (
assert_allclose_td,
is_tensor_collection,
is_tensorclass,
tensorclass,
TensorDict,
TensorDictBase,
)
from torch import multiprocessing as mp
from torch.utils._pytree import tree_flatten, tree_map
from torchrl.collectors import RandomPolicy, SyncDataCollector
from torchrl.collectors.utils import split_trajectories
from torchrl.data import (
FlatStorageCheckpointer,
MultiStep,
NestedStorageCheckpointer,
PrioritizedReplayBuffer,
RemoteTensorDictReplayBuffer,
ReplayBuffer,
ReplayBufferEnsemble,
TensorDictPrioritizedReplayBuffer,
TensorDictReplayBuffer,
)
from torchrl.data.replay_buffers import samplers, writers
from torchrl.data.replay_buffers.checkpointers import H5StorageCheckpointer
from torchrl.data.replay_buffers.samplers import (
PrioritizedSampler,
PrioritizedSliceSampler,
RandomSampler,
SamplerEnsemble,
SamplerWithoutReplacement,
SliceSampler,
SliceSamplerWithoutReplacement,
)
from torchrl.data.replay_buffers.storages import (
LazyMemmapStorage,
LazyTensorStorage,
ListStorage,
StorageEnsemble,
TensorStorage,
)
from torchrl.data.replay_buffers.writers import (
RoundRobinWriter,
TensorDictMaxValueWriter,
TensorDictRoundRobinWriter,
WriterEnsemble,
)
from torchrl.envs import GymEnv, SerialEnv
from torchrl.envs.transforms.transforms import (
BinarizeReward,
CatFrames,
CatTensors,
CenterCrop,
Compose,
DiscreteActionProjection,
DoubleToFloat,
FiniteTensorDictCheck,
FlattenObservation,
GrayScale,
gSDENoise,
ObservationNorm,
PinMemoryTransform,
RenameTransform,
Resize,
RewardClipping,
RewardScaling,
SqueezeTransform,
ToTensorImage,
UnsqueezeTransform,
VecNorm,
)
OLD_TORCH = parse(torch.__version__) < parse("2.0.0")
_has_tv = importlib.util.find_spec("torchvision") is not None
_has_gym = importlib.util.find_spec("gym") is not None
_has_snapshot = importlib.util.find_spec("torchsnapshot") is not None
_os_is_windows = sys.platform == "win32"
torch_2_3 = version.parse(
".".join([str(s) for s in version.parse(str(torch.__version__)).release])
) >= version.parse("2.3.0")
@pytest.mark.parametrize(
"sampler",
[
samplers.RandomSampler,
samplers.SamplerWithoutReplacement,
samplers.PrioritizedSampler,
],
)
@pytest.mark.parametrize(
"writer", [writers.RoundRobinWriter, writers.TensorDictMaxValueWriter]
)
@pytest.mark.parametrize(
"rb_type,storage,datatype",
[
[ReplayBuffer, ListStorage, None],
[TensorDictReplayBuffer, ListStorage, "tensordict"],
[RemoteTensorDictReplayBuffer, ListStorage, "tensordict"],
[ReplayBuffer, LazyTensorStorage, "tensor"],
[ReplayBuffer, LazyTensorStorage, "tensordict"],
[ReplayBuffer, LazyTensorStorage, "pytree"],
[TensorDictReplayBuffer, LazyTensorStorage, "tensordict"],
[RemoteTensorDictReplayBuffer, LazyTensorStorage, "tensordict"],
[ReplayBuffer, LazyMemmapStorage, "tensor"],
[ReplayBuffer, LazyMemmapStorage, "tensordict"],
[ReplayBuffer, LazyMemmapStorage, "pytree"],
[TensorDictReplayBuffer, LazyMemmapStorage, "tensordict"],
[RemoteTensorDictReplayBuffer, LazyMemmapStorage, "tensordict"],
],
)
@pytest.mark.parametrize("size", [3, 5, 100])
class TestComposableBuffers:
def _get_rb(self, rb_type, size, sampler, writer, storage):
if storage is not None:
storage = storage(size)
sampler_args = {}
if sampler is samplers.PrioritizedSampler:
sampler_args = {"max_capacity": size, "alpha": 0.8, "beta": 0.9}
sampler = sampler(**sampler_args)
writer = writer()
rb = rb_type(storage=storage, sampler=sampler, writer=writer, batch_size=3)
return rb
def _get_datum(self, datatype):
if datatype is None:
data = torch.randint(100, (1,))
elif datatype == "tensor":
data = torch.randint(100, (1,))
elif datatype == "tensordict":
data = TensorDict(
{"a": torch.randint(100, (1,)), "next": {"reward": torch.randn(1)}}, []
)
elif datatype == "pytree":
data = {
"a": torch.randint(100, (1,)),
"b": {"c": [torch.zeros(3), (torch.ones(2),)]},
30: torch.zeros(2),
}
else:
raise NotImplementedError(datatype)
return data
def _get_data(self, datatype, size):
if datatype is None:
data = torch.randint(100, (size, 1))
elif datatype == "tensor":
data = torch.randint(100, (size, 1))
elif datatype == "tensordict":
data = TensorDict(
{
"a": torch.randint(100, (size, 1)),
"next": {"reward": torch.randn(size, 1)},
},
[size],
)
elif datatype == "pytree":
data = {
"a": torch.randint(100, (size, 1)),
"b": {"c": [torch.zeros(size, 3), (torch.ones(size, 2),)]},
30: torch.zeros(size, 2),
}
else:
raise NotImplementedError(datatype)
return data
def test_rb_repr(self, rb_type, sampler, writer, storage, size, datatype):
if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows:
pytest.skip(
"Distributed package support on Windows is a prototype feature and is subject to changes."
)
torch.manual_seed(0)
rb = self._get_rb(
rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size
)
data = self._get_datum(datatype)
if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter:
with pytest.raises(
RuntimeError, match="expects data to be a tensor collection"
):
rb.add(data)
return
rb.add(data)
# we just check that str runs, not its value
assert str(rb)
rb.sample()
assert str(rb)
def test_add(self, rb_type, sampler, writer, storage, size, datatype):
if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows:
pytest.skip(
"Distributed package support on Windows is a prototype feature and is subject to changes."
)
torch.manual_seed(0)
rb = self._get_rb(
rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size
)
data = self._get_datum(datatype)
if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter:
with pytest.raises(
RuntimeError, match="expects data to be a tensor collection"
):
rb.add(data)
return
rb.add(data)
s, info = rb.sample(1, return_info=True)
assert len(rb) == 1
if isinstance(s, (torch.Tensor, TensorDictBase)):
assert s.ndim, s
s = s[0]
else:
def assert_ndim(tensor):
assert tensor.shape[0] == 1
tree_map(assert_ndim, s)
s = tree_map(lambda s: s[0], s)
if isinstance(s, TensorDictBase):
s = s.select(*data.keys(True), strict=False)
data = data.select(*s.keys(True), strict=False)
assert (s == data).all()
assert list(s.keys(True, True))
else:
flat_s = tree_flatten(s)[0]
flat_data = tree_flatten(data)[0]
assert all((_s == _data).all() for (_s, _data) in zip(flat_s, flat_data))
def test_cursor_position(self, rb_type, sampler, writer, storage, size, datatype):
storage = storage(size)
writer = writer()
writer.register_storage(storage)
batch1 = self._get_data(datatype, size=5)
cond = (
OLD_TORCH
and not isinstance(writer, TensorDictMaxValueWriter)
and size < len(batch1)
and isinstance(storage, TensorStorage)
)
if not is_tensor_collection(batch1) and isinstance(
writer, TensorDictMaxValueWriter
):
with pytest.raises(
RuntimeError, match="expects data to be a tensor collection"
):
writer.extend(batch1)
return
with pytest.warns(
UserWarning,
match="A cursor of length superior to the storage capacity was provided",
) if cond else contextlib.nullcontext():
writer.extend(batch1)
# Added less data than storage max size
if size > 5:
assert writer._cursor == 5
# Added more data than storage max size
elif size < 5:
# if Max writer, we don't necessarily overwrite existing values so
# we just check that the cursor is before the threshold
if isinstance(writer, TensorDictMaxValueWriter):
assert writer._cursor <= 5 - size
else:
assert writer._cursor == 5 - size
# Added as data as storage max size
else:
assert writer._cursor == 0
if not isinstance(writer, TensorDictMaxValueWriter):
batch2 = self._get_data(datatype, size=size - 1)
writer.extend(batch2)
assert writer._cursor == size - 1
def test_extend(self, rb_type, sampler, writer, storage, size, datatype):
if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows:
pytest.skip(
"Distributed package support on Windows is a prototype feature and is subject to changes."
)
torch.manual_seed(0)
rb = self._get_rb(
rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size
)
data_shape = 5
data = self._get_data(datatype, size=data_shape)
cond = (
OLD_TORCH
and writer is not TensorDictMaxValueWriter
and size < len(data)
and isinstance(rb._storage, TensorStorage)
)
if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter:
with pytest.raises(
RuntimeError, match="expects data to be a tensor collection"
):
rb.extend(data)
return
length = min(rb._storage.max_size, len(rb) + data_shape)
if writer is TensorDictMaxValueWriter:
data["next", "reward"][-length:] = 1_000_000
with pytest.warns(
UserWarning,
match="A cursor of length superior to the storage capacity was provided",
) if cond else contextlib.nullcontext():
rb.extend(data)
length = len(rb)
if is_tensor_collection(data):
data_iter = data[-length:]
else:
def data_iter():
for t in range(-length, -1):
yield tree_map(lambda x, t=t: x[t], data)
data_iter = data_iter()
for d in data_iter:
for b in rb._storage:
if isinstance(b, TensorDictBase):
keys = set(d.keys()).intersection(b.keys())
b = b.exclude("index").select(*keys, strict=False)
keys = set(d.keys()).intersection(b.keys())
d = d.select(*keys, strict=False)
if isinstance(b, (torch.Tensor, TensorDictBase)):
value = b == d
value = value.all()
else:
d_flat = tree_flatten(d)[0]
b_flat = tree_flatten(b)[0]
value = all((_b == _d).all() for (_b, _d) in zip(b_flat, d_flat))
if value:
break
else:
raise RuntimeError("did not find match")
data2 = self._get_data(datatype, size=2 * size + 2)
cond = (
OLD_TORCH
and writer is not TensorDictMaxValueWriter
and size < len(data2)
and isinstance(rb._storage, TensorStorage)
)
with pytest.warns(
UserWarning,
match="A cursor of length superior to the storage capacity was provided",
) if cond else contextlib.nullcontext():
rb.extend(data2)
def test_sample(self, rb_type, sampler, writer, storage, size, datatype):
if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows:
pytest.skip(
"Distributed package support on Windows is a prototype feature and is subject to changes."
)
torch.manual_seed(0)
rb = self._get_rb(
rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size
)
data = self._get_data(datatype, size=5)
cond = (
OLD_TORCH
and writer is not TensorDictMaxValueWriter
and size < len(data)
and isinstance(rb._storage, TensorStorage)
)
if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter:
with pytest.raises(
RuntimeError, match="expects data to be a tensor collection"
):
rb.extend(data)
return
with pytest.warns(
UserWarning,
match="A cursor of length superior to the storage capacity was provided",
) if cond else contextlib.nullcontext():
rb.extend(data)
rb_sample = rb.sample()
# if not isinstance(new_data, (torch.Tensor, TensorDictBase)):
# new_data = new_data[0]
if is_tensor_collection(data) or isinstance(data, torch.Tensor):
rb_sample_iter = rb_sample
else:
def data_iter_func(maxval, data=data):
for t in range(maxval):
yield tree_map(lambda x, t=t: x[t], data)
rb_sample_iter = data_iter_func(rb._batch_size, rb_sample)
for single_sample in rb_sample_iter:
if is_tensor_collection(data) or isinstance(data, torch.Tensor):
data_iter = data
else:
data_iter = data_iter_func(5, data)
for data_sample in data_iter:
if isinstance(data_sample, TensorDictBase):
keys = set(single_sample.keys()).intersection(data_sample.keys())
data_sample = data_sample.exclude("index").select(
*keys, strict=False
)
keys = set(single_sample.keys()).intersection(data_sample.keys())
single_sample = single_sample.select(*keys, strict=False)
if isinstance(data_sample, (torch.Tensor, TensorDictBase)):
value = data_sample == single_sample
value = value.all()
else:
d_flat = tree_flatten(single_sample)[0]
b_flat = tree_flatten(data_sample)[0]
value = all((_b == _d).all() for (_b, _d) in zip(b_flat, d_flat))
if value:
break
else:
raise RuntimeError("did not find match")
def test_index(self, rb_type, sampler, writer, storage, size, datatype):
if rb_type is RemoteTensorDictReplayBuffer and _os_is_windows:
pytest.skip(
"Distributed package support on Windows is a prototype feature and is subject to changes."
)
torch.manual_seed(0)
rb = self._get_rb(
rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size
)
data = self._get_data(datatype, size=5)
cond = (
OLD_TORCH
and writer is not TensorDictMaxValueWriter
and size < len(data)
and isinstance(rb._storage, TensorStorage)
)
if not is_tensor_collection(data) and writer is TensorDictMaxValueWriter:
with pytest.raises(
RuntimeError, match="expects data to be a tensor collection"
):
rb.extend(data)
return
with pytest.warns(
UserWarning,
match="A cursor of length superior to the storage capacity was provided",
) if cond else contextlib.nullcontext():
rb.extend(data)
d1 = rb[2]
d2 = rb._storage[2]
if type(d1) is not type(d2):
d1 = d1[0]
if is_tensor_collection(data) or isinstance(data, torch.Tensor):
b = d1 == d2
if not isinstance(b, bool):
b = b.all()
else:
d1_flat = tree_flatten(d1)[0]
d2_flat = tree_flatten(d2)[0]
b = all((_d1 == _d2).all() for (_d1, _d2) in zip(d1_flat, d2_flat))
assert b
def test_pickable(self, rb_type, sampler, writer, storage, size, datatype):
rb = self._get_rb(
rb_type=rb_type, sampler=sampler, writer=writer, storage=storage, size=size
)
serialized = pickle.dumps(rb)
rb2 = pickle.loads(serialized)
assert rb.__dict__.keys() == rb2.__dict__.keys()
for key in sorted(rb.__dict__.keys()):
assert isinstance(rb.__dict__[key], type(rb2.__dict__[key]))
class TestStorages:
def _get_tensor(self):
return torch.randn(10, 11)
def _get_tensordict(self):
return TensorDict(
{"data": torch.randn(10, 11), ("nested", "data"): torch.randn(10, 11, 3)},
[10, 11],
)
def _get_pytree(self):
return {
"a": torch.randint(100, (10, 11, 1)),
"b": {"c": [torch.zeros(10, 11), (torch.ones(10, 11),)]},
30: torch.zeros(10, 11),
}
def _get_tensorclass(self):
data = self._get_tensordict()
return make_tc(data)(**data, batch_size=data.shape)
@pytest.mark.parametrize("storage_type", [TensorStorage])
def test_errors(self, storage_type):
with pytest.raises(ValueError, match="Expected storage to be non-null"):
storage_type(None)
data = torch.randn(3)
with pytest.raises(
ValueError, match="The max-size and the storage shape mismatch"
):
storage_type(data, max_size=4)
@pytest.mark.parametrize(
"data_type", ["tensor", "tensordict", "tensorclass", "pytree"]
)
@pytest.mark.parametrize("storage_type", [TensorStorage])
def test_get_set(self, storage_type, data_type):
if data_type == "tensor":
data = self._get_tensor()
elif data_type == "tensorclass":
data = self._get_tensorclass()
elif data_type == "tensordict":
data = self._get_tensordict()
elif data_type == "pytree":
data = self._get_pytree()
else:
raise NotImplementedError
storage = storage_type(data)
if data_type == "pytree":
storage.set(range(10), tree_map(torch.zeros_like, data))
def check(x):
assert (x == 0).all()
tree_map(check, storage.get(range(10)))
else:
storage.set(range(10), torch.zeros_like(data))
assert (storage.get(range(10)) == 0).all()
@pytest.mark.parametrize(
"data_type", ["tensor", "tensordict", "tensorclass", "pytree"]
)
@pytest.mark.parametrize("storage_type", [TensorStorage])
def test_state_dict(self, storage_type, data_type):
if data_type == "tensor":
data = self._get_tensor()
elif data_type == "tensorclass":
data = self._get_tensorclass()
elif data_type == "tensordict":
data = self._get_tensordict()
elif data_type == "pytree":
data = self._get_pytree()
else:
raise NotImplementedError
storage = storage_type(data)
if data_type == "pytree":
with pytest.raises(TypeError, match="are not supported by"):
storage.state_dict()
return
sd = storage.state_dict()
storage2 = storage_type(torch.zeros_like(data))
storage2.load_state_dict(sd)
assert (storage.get(range(10)) == storage2.get(range(10))).all()
assert type(storage.get(range(10))) is type( # noqa: E721
storage2.get(range(10))
)
@pytest.mark.skipif(
not torch.cuda.device_count(),
reason="not cuda device found to test rb storage.",
)
@pytest.mark.parametrize(
"device_data,device_storage",
[
[torch.device("cuda"), torch.device("cpu")],
[torch.device("cpu"), torch.device("cuda")],
[torch.device("cpu"), "auto"],
[torch.device("cuda"), "auto"],
],
)
@pytest.mark.parametrize("storage_type", [LazyMemmapStorage, LazyTensorStorage])
@pytest.mark.parametrize("data_type", ["tensor", "tc", "td"])
def test_storage_device(self, device_data, device_storage, storage_type, data_type):
@tensorclass
class TC:
a: torch.Tensor
if data_type == "tensor":
data = torch.randn(3, device=device_data)
elif data_type == "td":
data = TensorDict(
{"a": torch.randn(3, device=device_data)}, [], device=device_data
)
elif data_type == "tc":
data = TC(
a=torch.randn(3, device=device_data),
batch_size=[],
device=device_data,
)
else:
raise NotImplementedError
if (
storage_type is LazyMemmapStorage
and device_storage != "auto"
and device_storage.type != "cpu"
):
with pytest.raises(ValueError, match="Memory map device other than CPU"):
storage_type(max_size=10, device=device_storage)
return
storage = storage_type(max_size=10, device=device_storage)
storage.set(0, data)
if device_storage != "auto":
assert storage.get(0).device.type == device_storage.type
else:
assert storage.get(0).device.type == storage.device.type
@pytest.mark.parametrize("storage_in", ["tensor", "memmap"])
@pytest.mark.parametrize("storage_out", ["tensor", "memmap"])
@pytest.mark.parametrize("init_out", [True, False])
@pytest.mark.parametrize(
"backend", ["torch"] + (["torchsnapshot"] if _has_snapshot else [])
)
def test_storage_state_dict(self, storage_in, storage_out, init_out, backend):
os.environ["CKPT_BACKEND"] = backend
buffer_size = 100
if storage_in == "memmap":
storage_in = LazyMemmapStorage(buffer_size, device="cpu")
elif storage_in == "tensor":
storage_in = LazyTensorStorage(buffer_size, device="cpu")
if storage_out == "memmap":
storage_out = LazyMemmapStorage(buffer_size, device="cpu")
elif storage_out == "tensor":
storage_out = LazyTensorStorage(buffer_size, device="cpu")
replay_buffer = TensorDictReplayBuffer(
pin_memory=False, prefetch=3, storage=storage_in, batch_size=3
)
# fill replay buffer with random data
transition = TensorDict(
{
"observation": torch.ones(1, 4),
"action": torch.ones(1, 2),
"reward": torch.ones(1, 1),
"dones": torch.ones(1, 1),
"next": {"observation": torch.ones(1, 4)},
},
batch_size=1,
)
for _ in range(3):
replay_buffer.extend(transition)
state_dict = replay_buffer.state_dict()
new_replay_buffer = TensorDictReplayBuffer(
pin_memory=False,
prefetch=3,
storage=storage_out,
batch_size=state_dict["_batch_size"],
)
if init_out:
new_replay_buffer.extend(transition)
new_replay_buffer.load_state_dict(state_dict)
s = new_replay_buffer.sample()
assert (s.exclude("index") == 1).all()
@pytest.mark.parametrize("device_data", get_default_devices())
@pytest.mark.parametrize("storage_type", [LazyMemmapStorage, LazyTensorStorage])
@pytest.mark.parametrize("data_type", ["tensor", "tc", "td", "pytree"])
@pytest.mark.parametrize("isinit", [True, False])
def test_storage_dumps_loads(
self, device_data, storage_type, data_type, isinit, tmpdir
):
torch.manual_seed(0)
dir_rb = tmpdir / "rb"
dir_save = tmpdir / "save"
dir_rb.mkdir()
dir_save.mkdir()
torch.manual_seed(0)
@tensorclass
class TC:
tensor: torch.Tensor
td: TensorDict
text: str
if data_type == "tensor":
data = torch.randint(10, (3,), device=device_data)
elif data_type == "pytree":
data = {
"a": torch.randint(10, (3,), device=device_data),
"b": {"c": [torch.ones(3), (-torch.ones(3, 2),)]},
30: -torch.ones(3, 1),
}
elif data_type == "td":
data = TensorDict(
{
"a": torch.randint(10, (3,), device=device_data),
"b": TensorDict(
{"c": torch.randint(10, (3,), device=device_data)},
batch_size=[3],
),
},
batch_size=[3],
device=device_data,
)
elif data_type == "tc":
data = TC(
tensor=torch.randint(10, (3,), device=device_data),
td=TensorDict(
{"c": torch.randint(10, (3,), device=device_data)}, batch_size=[3]
),
text="some text",
batch_size=[3],
device=device_data,
)
else:
raise NotImplementedError
if storage_type in (LazyMemmapStorage,):
storage = storage_type(max_size=10, scratch_dir=dir_rb)
else:
storage = storage_type(max_size=10)
# We cast the device to CPU as CUDA isn't automatically cast to CPU when using range() index
if data_type == "pytree":
storage.set(range(3), tree_map(lambda x: x.cpu(), data))
else:
storage.set(range(3), data.cpu())
storage.dumps(dir_save)
# check we can dump twice
storage.dumps(dir_save)
storage_recover = storage_type(max_size=10)
if isinit:
if data_type == "pytree":
storage_recover.set(
range(3), tree_map(lambda x: x.cpu().clone().zero_(), data)
)
else:
storage_recover.set(range(3), data.cpu().clone().zero_())
if data_type in ("tensor", "pytree") and not isinit:
with pytest.raises(
RuntimeError,
match="Cannot fill a non-initialized pytree-based TensorStorage",
):
storage_recover.loads(dir_save)
return
storage_recover.loads(dir_save)
# tree_map with more than one pytree is only available in torch >= 2.3
if torch_2_3:
if data_type in ("tensor", "pytree"):
tree_map(
torch.testing.assert_close,
tree_flatten(storage[:])[0],
tree_flatten(storage_recover[:])[0],
)
else:
assert_allclose_td(storage[:], storage_recover[:])
if data == "tc":
assert storage._storage.text == storage_recover._storage.text
def test_add_list_of_tds(self):
rb = ReplayBuffer(storage=LazyTensorStorage(100))
rb.extend([TensorDict({"a": torch.randn(2, 3)}, [2])])
assert len(rb) == 1
assert rb[:].shape == torch.Size([1, 2])
@pytest.mark.parametrize("max_size", [1000])
@pytest.mark.parametrize("shape", [[3, 4]])
@pytest.mark.parametrize("storage", [LazyTensorStorage, LazyMemmapStorage])
class TestLazyStorages:
def _get_nested_tensorclass(self, shape):
@tensorclass
class NestedTensorClass:
key1: torch.Tensor
key2: torch.Tensor
@tensorclass
class TensorClass:
key1: torch.Tensor
key2: torch.Tensor
next: NestedTensorClass
return TensorClass(
key1=torch.ones(*shape),
key2=torch.ones(*shape),
next=NestedTensorClass(
key1=torch.ones(*shape), key2=torch.ones(*shape), batch_size=shape
),
batch_size=shape,
)
def _get_nested_td(self, shape):
nested_td = TensorDict(
{
"key1": torch.ones(*shape),
"key2": torch.ones(*shape),
"next": TensorDict(
{
"key1": torch.ones(*shape),
"key2": torch.ones(*shape),
},
shape,
),
},
shape,
)
return nested_td
def test_init(self, max_size, shape, storage):
td = self._get_nested_td(shape)
mystorage = storage(max_size=max_size)
mystorage._init(td)
assert mystorage._storage.shape == (max_size, *shape)
def test_set(self, max_size, shape, storage):
td = self._get_nested_td(shape)
mystorage = storage(max_size=max_size)
mystorage.set(list(range(td.shape[0])), td)
assert mystorage._storage.shape == (max_size, *shape[1:])
idx = list(range(1, td.shape[0] - 1))
tc_sample = mystorage.get(idx)
assert tc_sample.shape == torch.Size([td.shape[0] - 2, *td.shape[1:]])
def test_init_tensorclass(self, max_size, shape, storage):
tc = self._get_nested_tensorclass(shape)
mystorage = storage(max_size=max_size)
mystorage._init(tc)
assert is_tensorclass(mystorage._storage)
assert mystorage._storage.shape == (max_size, *shape)
def test_set_tensorclass(self, max_size, shape, storage):
tc = self._get_nested_tensorclass(shape)
mystorage = storage(max_size=max_size)
mystorage.set(list(range(tc.shape[0])), tc)
assert mystorage._storage.shape == (max_size, *shape[1:])
idx = list(range(1, tc.shape[0] - 1))
tc_sample = mystorage.get(idx)
assert tc_sample.shape == torch.Size([tc.shape[0] - 2, *tc.shape[1:]])
def test_extend_list_pytree(self, max_size, shape, storage):
memory = ReplayBuffer(
storage=storage(max_size=max_size),
sampler=SamplerWithoutReplacement(),
)
data = [
(
torch.full(shape, i),
{"a": torch.full(shape, i), "b": (torch.full(shape, i))},
[torch.full(shape, i)],
)
for i in range(10)
]
memory.extend(data)
assert len(memory) == 10
assert len(memory._storage) == 10
sample = memory.sample(10)
for leaf in torch.utils._pytree.tree_leaves(sample):
assert (leaf.unique(sorted=True) == torch.arange(10)).all()
memory = ReplayBuffer(
storage=storage(max_size=max_size),
sampler=SamplerWithoutReplacement(),
)
t1x4 = torch.Tensor([0.1, 0.2, 0.3, 0.4])
t1x1 = torch.Tensor([0.01])
with pytest.raises(
RuntimeError, match="Stacking the elements of the list resulted in an error"
):
memory.extend([t1x4, t1x1, t1x4 + 0.4, t1x1 + 0.01])
@pytest.mark.parametrize("priority_key", ["pk", "td_error"])
@pytest.mark.parametrize("contiguous", [True, False])
@pytest.mark.parametrize("device", get_default_devices())
def test_ptdrb(priority_key, contiguous, device):
torch.manual_seed(0)
np.random.seed(0)
rb = TensorDictReplayBuffer(
sampler=samplers.PrioritizedSampler(5, alpha=0.7, beta=0.9),
priority_key=priority_key,
batch_size=5,
)
td1 = TensorDict(
source={
"a": torch.randn(3, 1),
priority_key: torch.rand(3, 1) / 10,
"_idx": torch.arange(3).view(3, 1),
},
batch_size=[3],
device=device,
)
rb.extend(td1)
s = rb.sample()
assert s.batch_size == torch.Size([5])
assert (td1[s.get("_idx").squeeze()].get("a") == s.get("a")).all()
assert_allclose_td(td1[s.get("_idx").squeeze()].select("a"), s.select("a"))
# test replacement
td2 = TensorDict(
source={
"a": torch.randn(5, 1),
priority_key: torch.rand(5, 1) / 10,
"_idx": torch.arange(5).view(5, 1),
},
batch_size=[5],
device=device,
)
rb.extend(td2)
s = rb.sample()
assert s.batch_size == torch.Size([5])
assert (td2[s.get("_idx").squeeze()].get("a") == s.get("a")).all()
assert_allclose_td(td2[s.get("_idx").squeeze()].select("a"), s.select("a"))
# test strong update
# get all indices that match first item
idx = s.get("_idx")
idx_match = (idx == idx[0]).nonzero()[:, 0]
s.set_at_(
priority_key,
torch.ones(idx_match.numel(), 1, device=device) * 100000000,
idx_match,
)
val = s.get("a")[0]
idx0 = s.get("_idx")[0]
rb.update_tensordict_priority(s)
s = rb.sample()
assert (val == s.get("a")).sum() >= 1
torch.testing.assert_close(td2[idx0].get("a").view(1), s.get("a").unique().view(1))
# test updating values of original td
td2.set_("a", torch.ones_like(td2.get("a")))
s = rb.sample()
torch.testing.assert_close(td2[idx0].get("a").view(1), s.get("a").unique().view(1))
@pytest.mark.parametrize("stack", [False, True])
@pytest.mark.parametrize("datatype", ["tc", "tb"])
@pytest.mark.parametrize("reduction", ["min", "max", "median", "mean"])
def test_replay_buffer_trajectories(stack, reduction, datatype):
traj_td = TensorDict(
{"obs": torch.randn(3, 4, 5), "actions": torch.randn(3, 4, 2)},
batch_size=[3, 4],
)
rbcls = functools.partial(TensorDictReplayBuffer, priority_key="td_error")
if datatype == "tc":
c = make_tc(traj_td)
rbcls = functools.partial(ReplayBuffer, storage=LazyTensorStorage(100))
traj_td = c(**traj_td, batch_size=traj_td.batch_size)
assert is_tensorclass(traj_td)
elif datatype != "tb":
raise NotImplementedError
if stack:
traj_td = torch.stack(list(traj_td), 0)
rb = rbcls(
sampler=samplers.PrioritizedSampler(
5,
alpha=0.7,
beta=0.9,
reduction=reduction,
),
batch_size=3,
)
rb.extend(traj_td)
if datatype == "tc":
sampled_td, info = rb.sample(return_info=True)
index = info["index"]
else:
sampled_td = rb.sample()
if datatype == "tc":
assert is_tensorclass(traj_td)
return
sampled_td.set("td_error", torch.rand(sampled_td.shape))
if datatype == "tc":