-
Notifications
You must be signed in to change notification settings - Fork 328
/
test_postprocs.py
316 lines (280 loc) · 10.5 KB
/
test_postprocs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import functools
import pytest
import torch
from _utils_internal import get_default_devices
from tensordict import assert_allclose_td, TensorDict
from torchrl.collectors.utils import split_trajectories
from torchrl.data.postprocs.postprocs import MultiStep
@pytest.mark.parametrize("n", range(1, 14))
@pytest.mark.parametrize("device", get_default_devices())
@pytest.mark.parametrize("key", ["observation", "pixels", "observation_whatever"])
def test_multistep(n, key, device, T=11):
torch.manual_seed(0)
# mock data
b = 5
done = torch.zeros(b, T, 1, dtype=torch.bool, device=device)
done[0, -1] = True
done[1, -2] = True
done[2, -3] = True
done[3, -4] = True
terminal = done.clone()
terminal[:, -1] = done.sum(1) != 1
mask = done.clone().cumsum(1).cumsum(1) >= 2
mask = ~mask
total_obs = torch.randn(1, T + 1, 1, device=device).expand(b, T + 1, 1)
tensordict = TensorDict(
source={
key: total_obs[:, :T] * mask.to(torch.float),
"done": done,
"next": {
key: total_obs[:, 1:] * mask.to(torch.float),
"done": done,
"reward": torch.randn(1, T, 1, device=device).expand(b, T, 1)
* mask.to(torch.float),
},
"collector": {"mask": mask},
},
batch_size=(b, T),
).to(device)
ms = MultiStep(
0.9,
n,
).to(device)
ms_tensordict = ms(tensordict.clone())
assert ms_tensordict.get("done").max() == 1
if n == 1:
assert_allclose_td(
tensordict, ms_tensordict.select(*list(tensordict.keys(True, True)))
)
# assert that done at last step is similar to unterminated traj
torch.testing.assert_close(
ms_tensordict.get("gamma")[4], ms_tensordict.get("gamma")[0]
)
torch.testing.assert_close(
ms_tensordict.get(("next", key))[4], ms_tensordict.get(("next", key))[0]
)
torch.testing.assert_close(
ms_tensordict.get("steps_to_next_obs")[4],
ms_tensordict.get("steps_to_next_obs")[0],
)
# check that next obs is properly replaced, or that it is terminated
next_obs = ms_tensordict.get(key)[:, (ms.n_steps) :]
true_next_obs = ms_tensordict.get(("next", key))[:, : -(ms.n_steps)]
terminated = ~ms_tensordict.get("nonterminal")
assert ((next_obs == true_next_obs).all(-1) | terminated[:, (ms.n_steps) :]).all()
# test gamma computation
torch.testing.assert_close(
ms_tensordict.get("gamma"), ms.gamma ** ms_tensordict.get("steps_to_next_obs")
)
# test reward
if n > 1:
assert (
ms_tensordict.get(("next", "reward"))
!= ms_tensordict.get(("next", "original_reward"))
).any()
else:
torch.testing.assert_close(
ms_tensordict.get(("next", "reward")),
ms_tensordict.get(("next", "original_reward")),
)
@pytest.mark.parametrize("device", get_default_devices())
@pytest.mark.parametrize(
"batch_size",
[
[4],
[],
[1],
[2, 3],
],
)
@pytest.mark.parametrize("T", [10, 1, 2])
@pytest.mark.parametrize("obs_dim", [[1], []])
@pytest.mark.parametrize("unsq_reward", [True, False])
@pytest.mark.parametrize("last_done", [True, False])
@pytest.mark.parametrize("n_steps", [4, 2, 1])
def test_mutistep_cattrajs(
batch_size, T, obs_dim, unsq_reward, last_done, device, n_steps
):
# tests multi-step in the presence of consecutive trajectories.
obs = torch.randn(*batch_size, T + 1, *obs_dim)
reward = torch.rand(*batch_size, T)
action = torch.rand(*batch_size, T)
done = torch.zeros(*batch_size, T + 1, dtype=torch.bool)
done[..., T // 2] = 1
if last_done:
done[..., -1] = 1
if unsq_reward:
reward = reward.unsqueeze(-1)
done = done.unsqueeze(-1)
td = TensorDict(
{
"obs": obs[..., :-1] if not obs_dim else obs[..., :-1, :],
"action": action,
"done": done[..., :-1] if not unsq_reward else done[..., :-1, :],
"next": {
"obs": obs[..., 1:] if not obs_dim else obs[..., 1:, :],
"done": done[..., 1:] if not unsq_reward else done[..., 1:, :],
"reward": reward,
},
},
batch_size=[*batch_size, T],
device=device,
)
ms = MultiStep(0.98, n_steps)
tdm = ms(td)
if n_steps == 1:
# n_steps = 0 has no effect
for k in td["next"].keys():
assert (tdm["next", k] == td["next", k]).all()
else:
next_obs = []
obs = td["next", "obs"]
done = td["next", "done"]
if obs_dim:
obs = obs.squeeze(-1)
if unsq_reward:
done = done.squeeze(-1)
for t in range(T):
idx = t + n_steps - 1
while (done[..., t:idx].any() and idx > t) or idx > done.shape[-1] - 1:
idx = idx - 1
next_obs.append(obs[..., idx])
true_next_obs = tdm.get(("next", "obs"))
if obs_dim:
true_next_obs = true_next_obs.squeeze(-1)
next_obs = torch.stack(next_obs, -1)
assert (next_obs == true_next_obs).all()
@pytest.mark.parametrize("unsq_reward", [True, False])
def test_unusual_done(unsq_reward):
batch_size = [10, 3]
T = 10
obs_dim = [
1,
]
last_done = True
device = torch.device("cpu")
n_steps = 3
obs = torch.randn(*batch_size, T + 1, 5, *obs_dim)
reward = torch.rand(*batch_size, T, 5)
action = torch.rand(*batch_size, T, 5)
done = torch.zeros(*batch_size, T + 1, 5, dtype=torch.bool)
done[..., T // 2, :] = 1
if last_done:
done[..., -1, :] = 1
if unsq_reward:
reward = reward.unsqueeze(-1)
done = done.unsqueeze(-1)
td = TensorDict(
{
"obs": obs[..., :-1, :] if not obs_dim else obs[..., :-1, :, :],
"action": action,
"done": done[..., :-1, :] if not unsq_reward else done[..., :-1, :, :],
"next": {
"obs": obs[..., 1:, :] if not obs_dim else obs[..., 1:, :, :],
"done": done[..., 1:, :] if not unsq_reward else done[..., 1:, :, :],
"reward": reward,
},
},
batch_size=[*batch_size, T],
device=device,
)
ms = MultiStep(0.98, n_steps)
if unsq_reward:
with pytest.raises(RuntimeError, match="tensordict shape must be compatible"):
_ = ms(td)
else:
# we just check that it runs
_ = ms(td)
class TestSplits:
"""Tests the splitting of collected tensordicts in trajectories."""
@staticmethod
def create_fake_trajs(
num_workers=32,
traj_len=200,
):
traj_ids = torch.arange(num_workers)
step_count = torch.zeros(num_workers)
workers = torch.arange(num_workers)
out = []
done0 = torch.zeros(num_workers, 1, dtype=torch.bool)
for _ in range(traj_len):
done = step_count == traj_ids # traj_id 0 has 0 steps, 1 has 1 step etc.
done = done.unsqueeze(-1)
td = TensorDict(
source={
("collector", "traj_ids"): traj_ids,
"a": traj_ids.clone().unsqueeze(-1),
"step_count": step_count,
"workers": workers,
"done": done0,
("next", "done"): done,
},
batch_size=[num_workers],
)
done0 = done
out.append(td.clone())
step_count += 1
traj_ids[done.squeeze(-1)] = traj_ids.max() + torch.arange(
1, done.sum() + 1
)
step_count[done.squeeze(-1)] = 0
out = torch.stack(out, 1).contiguous()
return out
@pytest.mark.parametrize("num_workers", range(3, 34, 3))
@pytest.mark.parametrize("traj_len", [10, 17, 50, 97])
@pytest.mark.parametrize(
"constr",
[
functools.partial(split_trajectories, prefix="collector"),
functools.partial(split_trajectories),
functools.partial(
split_trajectories, trajectory_key=("collector", "traj_ids")
),
],
)
def test_splits(self, num_workers, traj_len, constr):
trajs = TestSplits.create_fake_trajs(num_workers, traj_len)
assert trajs.shape[0] == num_workers
assert trajs.shape[1] == traj_len
split_trajs = constr(trajs)
assert (
split_trajs.shape[0] == split_trajs.get(("collector", "traj_ids")).max() + 1
)
assert split_trajs.shape[1] == split_trajs.get("step_count").max() + 1
assert split_trajs.get(("collector", "mask")).sum() == num_workers * traj_len
assert split_trajs.get(("next", "done")).sum(1).max() == 1
out_mask = split_trajs[split_trajs.get(("collector", "mask"))]
for i in range(split_trajs.shape[0]):
traj_id_split = split_trajs[i].get(("collector", "traj_ids"))[
split_trajs[i].get(("collector", "mask"))
]
assert 1 == len(traj_id_split.unique())
for w in range(num_workers):
assert (out_mask.get("workers") == w).sum() == traj_len
# Assert that either the chain is not done XOR if it is it must have the desired length (equal to traj id by design)
for i in range(split_trajs.get(("collector", "traj_ids")).max()):
idx_traj_id = out_mask.get(("collector", "traj_ids")) == i
# (!=) == (xor)
c1 = (idx_traj_id.sum() - 1 == i) and (
out_mask.get(("next", "done"))[idx_traj_id].sum() == 1
) # option 1: trajectory is complete
c2 = out_mask.get(("next", "done"))[idx_traj_id].sum() == 0
assert c1 != c2, (
f"traj_len={traj_len}, "
f"num_workers={num_workers}, "
f"traj_id={i}, "
f"idx_traj_id.sum()={idx_traj_id.sum()}, "
f"done={out_mask.get('done')[idx_traj_id].sum()}"
)
assert (
split_trajs.get(("collector", "traj_ids")).unique().numel()
== split_trajs.get(("collector", "traj_ids")).max() + 1
)
if __name__ == "__main__":
args, unknown = argparse.ArgumentParser().parse_known_args()
pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown)