-
Notifications
You must be signed in to change notification settings - Fork 331
/
Copy pathtest_libs.py
1664 lines (1487 loc) · 55.6 KB
/
test_libs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import importlib
_has_isaac = importlib.util.find_spec("isaacgym") is not None
if _has_isaac:
# isaac gym asks to be imported before torch...
import isaacgym # noqa
import isaacgymenvs # noqa
from torchrl.envs.libs.isaacgym import IsaacGymEnv
import argparse
import importlib
import time
from sys import platform
from typing import Optional, Union
import numpy as np
import pytest
import torch
import torchrl
from _utils_internal import (
_make_multithreaded_env,
CARTPOLE_VERSIONED,
get_available_devices,
get_default_devices,
HALFCHEETAH_VERSIONED,
PENDULUM_VERSIONED,
PONG_VERSIONED,
)
from packaging import version
from tensordict import LazyStackedTensorDict
from tensordict.tensordict import assert_allclose_td, TensorDict
from torch import nn
from torchrl._utils import implement_for
from torchrl.collectors.collectors import RandomPolicy, SyncDataCollector
from torchrl.data.datasets.d4rl import D4RLExperienceReplay
from torchrl.data.datasets.openml import OpenMLExperienceReplay
from torchrl.data.replay_buffers import SamplerWithoutReplacement
from torchrl.envs import (
Compose,
DoubleToFloat,
EnvCreator,
ParallelEnv,
RenameTransform,
)
from torchrl.envs.libs.brax import _has_brax, BraxEnv
from torchrl.envs.libs.dm_control import _has_dmc, DMControlEnv, DMControlWrapper
from torchrl.envs.libs.gym import (
_has_gym,
_is_from_pixels,
GymEnv,
GymWrapper,
MOGymEnv,
MOGymWrapper,
)
from torchrl.envs.libs.habitat import _has_habitat, HabitatEnv
from torchrl.envs.libs.jumanji import _has_jumanji, JumanjiEnv
from torchrl.envs.libs.openml import OpenMLEnv
from torchrl.envs.libs.robohive import RoboHiveEnv
from torchrl.envs.libs.vmas import _has_vmas, VmasEnv, VmasWrapper
from torchrl.envs.utils import check_env_specs, ExplorationType
from torchrl.envs.vec_env import _has_envpool, MultiThreadedEnvWrapper, SerialEnv
from torchrl.modules import ActorCriticOperator, MLP, SafeModule, ValueOperator
_has_d4rl = importlib.util.find_spec("d4rl") is not None
_has_mo = importlib.util.find_spec("mo_gymnasium") is not None
_has_sklearn = importlib.util.find_spec("sklearn") is not None
if _has_gym:
try:
import gymnasium as gym
from gymnasium import __version__ as gym_version
gym_version = version.parse(gym_version)
from gymnasium.wrappers.pixel_observation import PixelObservationWrapper
except ModuleNotFoundError:
import gym
gym_version = version.parse(gym.__version__)
if gym_version > version.parse("0.19"):
from gym.wrappers.pixel_observation import PixelObservationWrapper
else:
from torchrl.envs.libs.utils import (
GymPixelObservationWrapper as PixelObservationWrapper,
)
if _has_dmc:
from dm_control import suite
from dm_control.suite.wrappers import pixels
if _has_vmas:
import vmas
if _has_envpool:
import envpool
IS_OSX = platform == "darwin"
RTOL = 1e-1
ATOL = 1e-1
@pytest.mark.skipif(not _has_gym, reason="no gym library found")
class TestGym:
@pytest.mark.parametrize(
"env_name",
[
PONG_VERSIONED,
# PENDULUM_VERSIONED,
HALFCHEETAH_VERSIONED,
],
)
@pytest.mark.parametrize("frame_skip", [1, 3])
@pytest.mark.parametrize(
"from_pixels,pixels_only",
[
[False, False],
[True, True],
[True, False],
],
)
def test_gym(self, env_name, frame_skip, from_pixels, pixels_only):
if env_name == PONG_VERSIONED and not from_pixels:
# raise pytest.skip("already pixel")
# we don't skip because that would raise an exception
return
elif (
env_name != PONG_VERSIONED and from_pixels and torch.cuda.device_count() < 1
):
raise pytest.skip("no cuda device")
tdreset = []
tdrollout = []
final_seed = []
for _ in range(2):
env0 = GymEnv(
env_name,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
)
torch.manual_seed(0)
np.random.seed(0)
final_seed.append(env0.set_seed(0))
tdreset.append(env0.reset())
tdrollout.append(env0.rollout(max_steps=50))
assert env0.from_pixels is from_pixels
env0.close()
env_type = type(env0._env)
del env0
assert_allclose_td(*tdreset, rtol=RTOL, atol=ATOL)
assert_allclose_td(*tdrollout, rtol=RTOL, atol=ATOL)
final_seed0, final_seed1 = final_seed
assert final_seed0 == final_seed1
if env_name == PONG_VERSIONED:
base_env = gym.make(env_name, frameskip=frame_skip)
frame_skip = 1
else:
base_env = _make_gym_environment(env_name)
if from_pixels and not _is_from_pixels(base_env):
base_env = PixelObservationWrapper(base_env, pixels_only=pixels_only)
assert type(base_env) is env_type
env1 = GymWrapper(base_env, frame_skip=frame_skip)
torch.manual_seed(0)
np.random.seed(0)
final_seed2 = env1.set_seed(0)
tdreset2 = env1.reset()
rollout2 = env1.rollout(max_steps=50)
assert env1.from_pixels is from_pixels
env1.close()
del env1, base_env
assert_allclose_td(tdreset[0], tdreset2, rtol=RTOL, atol=ATOL)
assert final_seed0 == final_seed2
assert_allclose_td(tdrollout[0], rollout2, rtol=RTOL, atol=ATOL)
@pytest.mark.parametrize(
"env_name",
[
PONG_VERSIONED,
# PENDULUM_VERSIONED,
HALFCHEETAH_VERSIONED,
],
)
@pytest.mark.parametrize("frame_skip", [1, 3])
@pytest.mark.parametrize(
"from_pixels,pixels_only",
[
[False, False],
[True, True],
[True, False],
],
)
def test_gym_fake_td(self, env_name, frame_skip, from_pixels, pixels_only):
if env_name == PONG_VERSIONED and not from_pixels:
# raise pytest.skip("already pixel")
return
elif (
env_name != PONG_VERSIONED
and from_pixels
and (not torch.has_cuda or not torch.cuda.device_count())
):
raise pytest.skip("no cuda device")
env = GymEnv(
env_name,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
)
check_env_specs(env)
@pytest.mark.parametrize("frame_skip", [1, 3])
@pytest.mark.parametrize(
"from_pixels,pixels_only",
[
[False, False],
[True, True],
[True, False],
],
)
@pytest.mark.parametrize("wrapper", [True, False])
def test_mo(self, frame_skip, from_pixels, pixels_only, wrapper):
if importlib.util.find_spec("gymnasium") is not None and not _has_mo:
raise pytest.skip("mo-gym not found")
else:
# avoid skipping, which we consider as errors in the gym CI
return
def make_env():
import mo_gymnasium
if wrapper:
return MOGymWrapper(
mo_gymnasium.make("minecart-v0"),
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
)
else:
return MOGymEnv(
"minecart-v0",
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
)
env = make_env()
check_env_specs(env)
env = SerialEnv(2, make_env)
check_env_specs(env)
def test_info_reader(self):
try:
import gym_super_mario_bros as mario_gym
except ImportError as err:
try:
import gym
# with 0.26 we must have installed gym_super_mario_bros
# Since we capture the skips as errors, we raise a skip in this case
# Otherwise, we just return
if (
version.parse("0.26.0")
<= version.parse(gym.__version__)
< version.parse("0.27.0")
):
raise pytest.skip(f"no super mario bros: error=\n{err}")
except ImportError:
pass
return
env = mario_gym.make("SuperMarioBros-v0", apply_api_compatibility=True)
env = GymWrapper(env)
def info_reader(info, tensordict):
assert isinstance(info, dict) # failed before bugfix
env.info_dict_reader = info_reader
env.reset()
env.rand_step()
env.rollout(3)
@implement_for("gymnasium", "0.27.0", None)
def test_one_hot_and_categorical(self):
# tests that one-hot and categorical work ok when an integer is expected as action
cliff_walking = GymEnv("CliffWalking-v0", categorical_action_encoding=True)
cliff_walking.rollout(10)
check_env_specs(cliff_walking)
cliff_walking = GymEnv("CliffWalking-v0", categorical_action_encoding=False)
cliff_walking.rollout(10)
check_env_specs(cliff_walking)
@implement_for("gym", None, "0.27.0")
def test_one_hot_and_categorical(self): # noqa: F811
# we do not skip (bc we may want to make sure nothing is skipped)
# but CliffWalking-v0 in earlier Gym versions uses np.bool, which
# was deprecated after np 1.20, and we don't want to install multiple np
# versions.
return
@implement_for("gym", None, "0.26")
def _make_gym_environment(env_name): # noqa: F811
return gym.make(env_name)
@implement_for("gym", "0.26", None)
def _make_gym_environment(env_name): # noqa: F811
return gym.make(env_name, render_mode="rgb_array")
@implement_for("gymnasium", "0.27", None)
def _make_gym_environment(env_name): # noqa: F811
return gym.make(env_name, render_mode="rgb_array")
@pytest.mark.skipif(not _has_dmc, reason="no dm_control library found")
@pytest.mark.parametrize("env_name,task", [["cheetah", "run"]])
@pytest.mark.parametrize("frame_skip", [1, 3])
@pytest.mark.parametrize(
"from_pixels,pixels_only",
[
[True, True],
[True, False],
[False, False],
],
)
class TestDMControl:
def test_dmcontrol(self, env_name, task, frame_skip, from_pixels, pixels_only):
if from_pixels and (not torch.has_cuda or not torch.cuda.device_count()):
raise pytest.skip("no cuda device")
tds = []
tds_reset = []
final_seed = []
for _ in range(2):
env0 = DMControlEnv(
env_name,
task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
)
torch.manual_seed(0)
np.random.seed(0)
final_seed0 = env0.set_seed(0)
tdreset0 = env0.reset()
rollout0 = env0.rollout(max_steps=50)
env0.close()
del env0
tds_reset.append(tdreset0)
tds.append(rollout0)
final_seed.append(final_seed0)
tdreset1, tdreset0 = tds_reset
rollout0, rollout1 = tds
final_seed0, final_seed1 = final_seed
assert_allclose_td(tdreset1, tdreset0)
assert final_seed0 == final_seed1
assert_allclose_td(rollout0, rollout1)
env1 = DMControlEnv(
env_name,
task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
)
torch.manual_seed(1)
np.random.seed(1)
final_seed1 = env1.set_seed(1)
tdreset1 = env1.reset()
rollout1 = env1.rollout(max_steps=50)
env1.close()
del env1
with pytest.raises(AssertionError):
assert_allclose_td(tdreset1, tdreset0)
assert final_seed0 == final_seed1
assert_allclose_td(rollout0, rollout1)
base_env = suite.load(env_name, task)
if from_pixels:
render_kwargs = {"camera_id": 0}
base_env = pixels.Wrapper(
base_env, pixels_only=pixels_only, render_kwargs=render_kwargs
)
env2 = DMControlWrapper(base_env, frame_skip=frame_skip)
torch.manual_seed(0)
np.random.seed(0)
final_seed2 = env2.set_seed(0)
tdreset2 = env2.reset()
rollout2 = env2.rollout(max_steps=50)
assert_allclose_td(tdreset0, tdreset2)
assert final_seed0 == final_seed2
assert_allclose_td(rollout0, rollout2)
def test_faketd(self, env_name, task, frame_skip, from_pixels, pixels_only):
if from_pixels and (not torch.has_cuda or not torch.cuda.device_count()):
raise pytest.skip("no cuda device")
env = DMControlEnv(
env_name,
task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
)
check_env_specs(env)
params = []
if _has_dmc:
params = [
# [DMControlEnv, ("cheetah", "run"), {"from_pixels": True}],
[DMControlEnv, ("cheetah", "run"), {"from_pixels": False}],
]
if _has_gym:
params += [
# [GymEnv, (HALFCHEETAH_VERSIONED,), {"from_pixels": True}],
[GymEnv, (HALFCHEETAH_VERSIONED,), {"from_pixels": False}],
[GymEnv, (PONG_VERSIONED,), {}],
]
@pytest.mark.skipif(
IS_OSX,
reason="rendering unstable on osx, skipping (mujoco.FatalError: gladLoadGL error)",
)
@pytest.mark.parametrize("env_lib,env_args,env_kwargs", params)
def test_td_creation_from_spec(env_lib, env_args, env_kwargs):
if (
gym_version < version.parse("0.26.0")
and env_kwargs.get("from_pixels", False)
and torch.cuda.device_count() == 0
):
raise pytest.skip(
"Skipping test as rendering is not supported in tests before gym 0.26."
)
env = env_lib(*env_args, **env_kwargs)
td = env.rollout(max_steps=5)
td0 = td[0]
fake_td = env.fake_tensordict()
assert set(fake_td.keys(include_nested=True, leaves_only=True)) == set(
td.keys(include_nested=True, leaves_only=True)
)
for key in fake_td.keys(include_nested=True, leaves_only=True):
assert fake_td.get(key).shape == td.get(key)[0].shape
for key in fake_td.keys(include_nested=True, leaves_only=True):
assert fake_td.get(key).shape == td0.get(key).shape
assert fake_td.get(key).dtype == td0.get(key).dtype
assert fake_td.get(key).device == td0.get(key).device
params = []
if _has_dmc:
params += [
# [DMControlEnv, ("cheetah", "run"), {"from_pixels": True}],
[DMControlEnv, ("cheetah", "run"), {"from_pixels": False}],
]
if _has_gym:
params += [
# [GymEnv, (HALFCHEETAH_VERSIONED,), {"from_pixels": True}],
[GymEnv, (HALFCHEETAH_VERSIONED,), {"from_pixels": False}],
# [GymEnv, (PONG_VERSIONED,), {}], # 1226: skipping
]
# @pytest.mark.skipif(IS_OSX, reason="rendering unstable on osx, skipping")
@pytest.mark.parametrize("env_lib,env_args,env_kwargs", params)
@pytest.mark.parametrize(
"device",
[torch.device("cuda:0") if torch.cuda.device_count() else torch.device("cpu")],
)
class TestCollectorLib:
def test_collector_run(self, env_lib, env_args, env_kwargs, device):
if not _has_dmc and env_lib is DMControlEnv:
raise pytest.skip("no dmc")
if not _has_gym and env_lib is GymEnv:
raise pytest.skip("no gym")
from_pixels = env_kwargs.get("from_pixels", False)
if from_pixels and (not torch.has_cuda or not torch.cuda.device_count()):
raise pytest.skip("no cuda device")
env_fn = EnvCreator(lambda: env_lib(*env_args, **env_kwargs, device=device))
env = SerialEnv(3, env_fn)
# env = ParallelEnv(3, env_fn) # 1226: Serial for efficiency reasons
# check_env_specs(env)
# env = ParallelEnv(3, env_fn)
frames_per_batch = 21
collector = SyncDataCollector( # 1226: not using MultiaSync for perf reasons
create_env_fn=env,
policy=RandomPolicy(action_spec=env.action_spec),
total_frames=-1,
max_frames_per_traj=100,
frames_per_batch=frames_per_batch,
init_random_frames=-1,
reset_at_each_iter=False,
split_trajs=True,
device=device,
storing_device=device,
exploration_type=ExplorationType.RANDOM,
)
for i, _data in enumerate(collector):
if i == 3:
break
collector.shutdown()
assert _data.shape[1] == -(frames_per_batch // -env.num_workers)
assert _data.shape[0] == frames_per_batch // _data.shape[1]
del env
@pytest.mark.skipif(not _has_habitat, reason="habitat not installed")
@pytest.mark.parametrize("envname", ["HabitatRenderPick-v0", "HabitatPick-v0"])
class TestHabitat:
def test_habitat(self, envname):
env = HabitatEnv(envname)
_ = env.rollout(3)
check_env_specs(env)
@pytest.mark.parametrize("from_pixels", [True, False])
def test_habitat_render(self, envname, from_pixels):
env = HabitatEnv(envname, from_pixels=from_pixels)
rollout = env.rollout(3)
check_env_specs(env)
if from_pixels:
assert "pixels" in rollout.keys()
@pytest.mark.skipif(not _has_jumanji, reason="jumanji not installed")
@pytest.mark.parametrize(
"envname",
[
"TSP-v1",
"Snake-v1",
],
)
class TestJumanji:
def test_jumanji_seeding(self, envname):
final_seed = []
tdreset = []
tdrollout = []
for _ in range(2):
env = JumanjiEnv(envname)
torch.manual_seed(0)
np.random.seed(0)
final_seed.append(env.set_seed(0))
tdreset.append(env.reset())
rollout = env.rollout(max_steps=50)
tdrollout.append(rollout)
env.close()
del env
assert final_seed[0] == final_seed[1]
assert_allclose_td(*tdreset)
assert_allclose_td(*tdrollout)
@pytest.mark.parametrize("batch_size", [(), (5,), (5, 4)])
def test_jumanji_batch_size(self, envname, batch_size):
env = JumanjiEnv(envname, batch_size=batch_size)
env.set_seed(0)
tdreset = env.reset()
tdrollout = env.rollout(max_steps=50)
env.close()
del env
assert tdreset.batch_size == batch_size
assert tdrollout.batch_size[:-1] == batch_size
@pytest.mark.parametrize("batch_size", [(), (5,), (5, 4)])
def test_jumanji_spec_rollout(self, envname, batch_size):
env = JumanjiEnv(envname, batch_size=batch_size)
env.set_seed(0)
check_env_specs(env)
@pytest.mark.parametrize("batch_size", [(), (5,), (5, 4)])
def test_jumanji_consistency(self, envname, batch_size):
import jax
import jax.numpy as jnp
import numpy as onp
from torchrl.envs.libs.jax_utils import _tree_flatten
env = JumanjiEnv(envname, batch_size=batch_size)
obs_keys = list(env.observation_spec.keys(True))
env.set_seed(1)
rollout = env.rollout(10)
env.set_seed(1)
key = env.key
base_env = env._env
key, *keys = jax.random.split(key, int(np.prod(batch_size) + 1))
state, timestep = jax.vmap(base_env.reset)(jnp.stack(keys))
# state = env._reshape(state)
# timesteps.append(timestep)
for i in range(rollout.shape[-1]):
action = rollout[..., i]["action"]
# state = env._flatten(state)
action = _tree_flatten(env.read_action(action), env.batch_size)
state, timestep = jax.vmap(base_env.step)(state, action)
# state = env._reshape(state)
# timesteps.append(timestep)
for _key in obs_keys:
if isinstance(_key, str):
_key = (_key,)
try:
t2 = getattr(timestep, _key[0])
except AttributeError:
try:
t2 = getattr(timestep.observation, _key[0])
except AttributeError:
continue
t1 = rollout[..., i][("next", *_key)]
for __key in _key[1:]:
t2 = getattr(t2, _key)
t2 = torch.tensor(onp.asarray(t2)).view_as(t1)
torch.testing.assert_close(t1, t2)
ENVPOOL_CLASSIC_CONTROL_ENVS = [
PENDULUM_VERSIONED,
"MountainCar-v0",
"MountainCarContinuous-v0",
"Acrobot-v1",
CARTPOLE_VERSIONED,
]
ENVPOOL_ATARI_ENVS = [] # PONG_VERSIONED]
ENVPOOL_GYM_ENVS = ENVPOOL_CLASSIC_CONTROL_ENVS + ENVPOOL_ATARI_ENVS
ENVPOOL_DM_ENVS = ["CheetahRun-v1"]
ENVPOOL_ALL_ENVS = ENVPOOL_GYM_ENVS + ENVPOOL_DM_ENVS
@pytest.mark.skipif(not _has_envpool, reason="No envpool library found")
class TestEnvPool:
@pytest.mark.parametrize("env_name", ENVPOOL_ALL_ENVS)
def test_env_wrapper_creation(self, env_name):
env_name = env_name.replace("ALE/", "") # EnvPool naming convention
envpool_env = envpool.make(
task_id=env_name, env_type="gym", num_envs=4, gym_reset_return_info=True
)
env = MultiThreadedEnvWrapper(envpool_env)
env.reset()
env.rand_step()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize(
"env_name", ENVPOOL_GYM_ENVS
) # Not working for CheetahRun-v1 yet
@pytest.mark.parametrize("frame_skip", [4, 1])
@pytest.mark.parametrize("transformed_out", [False, True])
def test_specs(self, env_name, frame_skip, transformed_out, T=10, N=3):
env_multithreaded = _make_multithreaded_env(
env_name,
frame_skip,
transformed_out=transformed_out,
N=N,
)
check_env_specs(env_multithreaded)
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("env_name", ENVPOOL_ALL_ENVS)
@pytest.mark.parametrize("frame_skip", [4, 1])
@pytest.mark.parametrize("transformed_out", [False, True])
def test_env_basic_operation(
self, env_name, frame_skip, transformed_out, T=10, N=3
):
torch.manual_seed(0)
env_multithreaded = _make_multithreaded_env(
env_name,
frame_skip,
transformed_out=transformed_out,
N=N,
)
td = TensorDict(
source={"action": env_multithreaded.action_spec.rand()},
batch_size=[
N,
],
)
td1 = env_multithreaded.step(td)
assert not td1.is_shared()
assert ("next", "done") in td1.keys(True)
assert ("next", "reward") in td1.keys(True)
with pytest.raises(RuntimeError):
# number of actions does not match number of workers
td = TensorDict(
source={"action": env_multithreaded.action_spec.rand()},
batch_size=[N - 1],
)
_ = env_multithreaded.step(td)
_reset = torch.zeros(N, dtype=torch.bool).bernoulli_()
td_reset = TensorDict(
source={"_reset": _reset},
batch_size=[N],
)
env_multithreaded.reset(tensordict=td_reset)
td = env_multithreaded.rollout(
policy=None, max_steps=T, break_when_any_done=False
)
assert (
td.shape == torch.Size([N, T]) or td.get("done").sum(1).all()
), f"{td.shape}, {td.get('done').sum(1)}"
env_multithreaded.close()
# Don't run on Atari envs because output is uint8
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("env_name", ENVPOOL_CLASSIC_CONTROL_ENVS + ENVPOOL_DM_ENVS)
@pytest.mark.parametrize("frame_skip", [4, 1])
@pytest.mark.parametrize("transformed_out", [True, False])
def test_env_with_policy(
self,
env_name,
frame_skip,
transformed_out,
T=10,
N=3,
):
class DiscreteChoice(torch.nn.Module):
"""Dummy module producing discrete output. Necessary when the action space is discrete."""
def __init__(self, out_dim: int, dtype: Optional[Union[torch.dtype, str]]):
super().__init__()
self.lin = torch.nn.LazyLinear(out_dim, dtype=dtype)
def forward(self, x):
res = torch.argmax(self.lin(x), axis=-1, keepdim=True)
return res
env_multithreaded = _make_multithreaded_env(
env_name,
frame_skip,
transformed_out=transformed_out,
N=N,
)
if env_name == "CheetahRun-v1":
in_keys = [("velocity")]
dtype = torch.float64
else:
in_keys = ["observation"]
dtype = torch.float32
if env_multithreaded.action_spec.shape:
module = torch.nn.LazyLinear(
env_multithreaded.action_spec.shape[-1], dtype=dtype
)
else:
# Action space is discrete
module = DiscreteChoice(env_multithreaded.action_spec.space.n, dtype=dtype)
policy = ActorCriticOperator(
SafeModule(
spec=None,
module=torch.nn.LazyLinear(12, dtype=dtype),
in_keys=in_keys,
out_keys=["hidden"],
),
SafeModule(
spec=None,
module=module,
in_keys=["hidden"],
out_keys=["action"],
),
ValueOperator(
module=MLP(out_features=1, num_cells=[], layer_kwargs={"dtype": dtype}),
in_keys=["hidden", "action"],
),
)
td = TensorDict(
source={"action": env_multithreaded.action_spec.rand()},
batch_size=[
N,
],
)
td1 = env_multithreaded.step(td)
assert not td1.is_shared()
assert ("next", "done") in td1.keys(True)
assert ("next", "reward") in td1.keys(True)
with pytest.raises(RuntimeError):
# number of actions does not match number of workers
td = TensorDict(
source={"action": env_multithreaded.action_spec.rand()},
batch_size=[N - 1],
)
_ = env_multithreaded.step(td)
reset = torch.zeros(N, dtype=torch.bool).bernoulli_()
td_reset = TensorDict(
source={"_reset": reset},
batch_size=[N],
)
env_multithreaded.reset(tensordict=td_reset)
td = env_multithreaded.rollout(
policy=policy, max_steps=T, break_when_any_done=False
)
assert (
td.shape == torch.Size([N, T]) or td.get("done").sum(1).all()
), f"{td.shape}, {td.get('done').sum(1)}"
env_multithreaded.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("env_name", ENVPOOL_ALL_ENVS)
@pytest.mark.parametrize("frame_skip", [4, 1])
@pytest.mark.parametrize("transformed_out", [True, False])
def test_multithreaded_env_seed(
self, env_name, frame_skip, transformed_out, seed=100, N=4
):
# Create the first env, set the seed, and perform a sequence of operations
env = _make_multithreaded_env(
env_name,
frame_skip,
transformed_out=True,
N=N,
)
action = env.action_spec.rand()
env.set_seed(seed)
td0a = env.reset()
td1a = env.step(td0a.clone().set("action", action))
td2a = env.rollout(max_steps=10)
# Create a new env, set the seed, and repeat same operations
env = _make_multithreaded_env(
env_name,
frame_skip,
transformed_out=True,
N=N,
)
env.set_seed(seed)
td0b = env.reset()
td1b = env.step(td0b.clone().set("action", action))
td2b = env.rollout(max_steps=10)
# Check that results on two envs are identical
assert_allclose_td(td0a, td0b.select(*td0a.keys()))
assert_allclose_td(td1a, td1b)
assert_allclose_td(td2a, td2b)
# Check that results are different if seed is different
# Skip Pong, since there different actions can lead to the same result
if env_name != PONG_VERSIONED:
env.set_seed(
seed=seed + 10,
)
td0c = env.reset()
td1c = env.step(td0c.clone().set("action", action))
with pytest.raises(AssertionError):
assert_allclose_td(td0a, td0c.select(*td0a.keys()))
with pytest.raises(AssertionError):
assert_allclose_td(td1a, td1c)
env.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
def test_multithread_env_shutdown(self):
env = _make_multithreaded_env(
PENDULUM_VERSIONED,
1,
transformed_out=False,
N=3,
)
env.reset()
assert not env.is_closed
env.rand_step()
assert not env.is_closed
env.close()
assert env.is_closed
env.reset()
assert not env.is_closed
env.close()
@pytest.mark.skipif(not torch.cuda.device_count(), reason="no cuda to test on")
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.parametrize("frame_skip", [4])
@pytest.mark.parametrize("device", [0])
@pytest.mark.parametrize("env_name", ENVPOOL_ALL_ENVS)
@pytest.mark.parametrize("transformed_out", [False, True])
@pytest.mark.parametrize("open_before", [False, True])
def test_multithreaded_env_cast(
self,
env_name,
frame_skip,
transformed_out,
device,
open_before,
T=10,
N=3,
):
# tests casting to device
env_multithread = _make_multithreaded_env(
env_name,
frame_skip,
transformed_out=transformed_out,
N=N,
)
if open_before:
td_cpu = env_multithread.rollout(max_steps=10)
assert td_cpu.device == torch.device("cpu")
env_multithread = env_multithread.to(device)
assert env_multithread.observation_spec.device == torch.device(device)
assert env_multithread.action_spec.device == torch.device(device)
assert env_multithread.reward_spec.device == torch.device(device)
assert env_multithread.device == torch.device(device)
td_device = env_multithread.reset()
assert td_device.device == torch.device(device), env_multithread
td_device = env_multithread.rand_step()
assert td_device.device == torch.device(device), env_multithread
td_device = env_multithread.rollout(max_steps=10)
assert td_device.device == torch.device(device), env_multithread
env_multithread.close()
@pytest.mark.skipif(not _has_gym, reason="no gym")
@pytest.mark.skipif(not torch.cuda.device_count(), reason="no cuda device detected")
@pytest.mark.parametrize("frame_skip", [4])
@pytest.mark.parametrize("device", [0])
@pytest.mark.parametrize("env_name", ENVPOOL_ALL_ENVS)
@pytest.mark.parametrize("transformed_out", [True, False])
def test_env_device(self, env_name, frame_skip, transformed_out, device):
# tests creation on device
torch.manual_seed(0)
N = 3
env_multithreaded = _make_multithreaded_env(
env_name,
frame_skip,
transformed_out=transformed_out,
device=device,
N=N,
)
assert env_multithreaded.device == torch.device(device)
out = env_multithreaded.rollout(max_steps=20)
assert out.device == torch.device(device)
env_multithreaded.close()
@pytest.mark.skipif(not _has_brax, reason="brax not installed")
@pytest.mark.parametrize("envname", ["fast"])
class TestBrax:
def test_brax_seeding(self, envname):
final_seed = []
tdreset = []
tdrollout = []
for _ in range(2):
env = BraxEnv(envname)
torch.manual_seed(0)
np.random.seed(0)
final_seed.append(env.set_seed(0))
tdreset.append(env.reset())
tdrollout.append(env.rollout(max_steps=50))
env.close()
del env
assert final_seed[0] == final_seed[1]
assert_allclose_td(*tdreset)
assert_allclose_td(*tdrollout)
@pytest.mark.parametrize("batch_size", [(), (5,), (5, 4)])
def test_brax_batch_size(self, envname, batch_size):
env = BraxEnv(envname, batch_size=batch_size)
env.set_seed(0)
tdreset = env.reset()
tdrollout = env.rollout(max_steps=50)
env.close()
del env
assert tdreset.batch_size == batch_size
assert tdrollout.batch_size[:-1] == batch_size
@pytest.mark.parametrize("batch_size", [(), (5,), (5, 4)])
def test_brax_spec_rollout(self, envname, batch_size):
env = BraxEnv(envname, batch_size=batch_size)
env.set_seed(0)
check_env_specs(env)
@pytest.mark.parametrize("batch_size", [(), (5,), (5, 4)])
@pytest.mark.parametrize(
"requires_grad",
[
True,