-
Notifications
You must be signed in to change notification settings - Fork 328
/
Copy pathtest_trainer.py
1070 lines (918 loc) · 35.3 KB
/
test_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import os
import tempfile
from argparse import Namespace
from collections import OrderedDict
from os import path, walk
from time import sleep
import pytest
import torch
from torch import nn
try:
from tensorboard.backend.event_processing import event_accumulator
from torchrl.record.loggers.tensorboard import TensorboardLogger
_has_tb = True
except ImportError:
_has_tb = False
from _utils_internal import PONG_VERSIONED
from tensordict import TensorDict
from torchrl.data import (
LazyMemmapStorage,
LazyTensorStorage,
ListStorage,
TensorDictPrioritizedReplayBuffer,
TensorDictReplayBuffer,
)
from torchrl.envs.libs.gym import _has_gym
from torchrl.trainers import Recorder, Trainer
from torchrl.trainers.helpers import transformed_env_constructor
from torchrl.trainers.trainers import (
_has_tqdm,
_has_ts,
BatchSubSampler,
CountFramesLog,
LogReward,
mask_batch,
OptimizerHook,
ReplayBufferTrainer,
REWARD_KEY,
RewardNormalizer,
SelectKeys,
UpdateWeights,
)
def _fun_checker(fun, checker):
def new_fun(*args, **kwargs):
checker[0] = True
return fun(*args, **kwargs)
return new_fun, fun
class MockingOptim:
param_groups = [{"params": []}]
class MockingCollector:
called_update_policy_weights_ = False
def set_seed(self, seed, **kwargs):
return seed
def update_policy_weights_(self):
self.called_update_policy_weights_ = True
def shutdown(self):
pass
def state_dict(self):
return {}
def load_state_dict(self, state_dict):
pass
class MockingLossModule(nn.Module):
pass
_mocking_optim = MockingOptim()
def mocking_trainer(file=None, optimizer=_mocking_optim) -> Trainer:
trainer = Trainer(
collector=MockingCollector(),
total_frames=None,
frame_skip=None,
optim_steps_per_batch=None,
loss_module=MockingLossModule(),
optimizer=optimizer,
save_trainer_file=file,
)
trainer._pbar_str = OrderedDict()
return trainer
class TestSelectKeys:
def test_selectkeys(self):
trainer = mocking_trainer()
key1 = "first key"
key2 = "second key"
td = TensorDict(
{
key1: torch.randn(3),
key2: torch.randn(3),
},
[],
)
trainer.register_op("batch_process", SelectKeys([key1]))
td_out = trainer._process_batch_hook(td)
assert key1 in td_out.keys()
assert key2 not in td_out.keys()
def test_selectkeys_statedict(self):
if not _has_ts:
os.environ["CKPT_BACKEND"] = "torch"
trainer = mocking_trainer()
key1 = "first key"
key2 = "second key"
td = TensorDict(
{
key1: torch.randn(3),
key2: torch.randn(3),
},
[],
)
hook = SelectKeys([key1])
hook.register(trainer)
trainer._process_batch_hook(td)
trainer2 = mocking_trainer()
hook2 = SelectKeys([key1])
hook2.register(trainer2)
sd = trainer.state_dict()
assert not len(sd["select_keys"])
trainer2.load_state_dict(sd)
@pytest.mark.parametrize("backend", ["torchsnapshot", "torch"])
def test_selectkeys_save(self, backend):
if not _has_ts and backend == "torchsnapshot":
pytest.skip("torchsnapshot not found")
# we overwrite the method to make sure that load_state_dict and state_dict are being called
state_dict_has_been_called = [False]
load_state_dict_has_been_called = [False]
SelectKeys.state_dict, SelectKeys_state_dict = _fun_checker(
SelectKeys.state_dict, state_dict_has_been_called
)
SelectKeys.load_state_dict, SelectKeys_load_state_dict = _fun_checker(
SelectKeys.load_state_dict, load_state_dict_has_been_called
)
os.environ["CKPT_BACKEND"] = backend
with tempfile.TemporaryDirectory() as tmpdirname:
if backend == "torch":
file = path.join(tmpdirname, "file.pt")
elif backend == "torchsnapshot":
file = tmpdirname
else:
raise NotImplementedError
trainer = mocking_trainer(file=file)
key1 = "first key"
key2 = "second key"
td = TensorDict(
{
key1: torch.randn(3),
key2: torch.randn(3),
},
[],
)
select_keys = SelectKeys([key1])
select_keys.register(trainer)
trainer._process_batch_hook(td)
trainer.save_trainer(force_save=True)
assert state_dict_has_been_called[0]
trainer2 = mocking_trainer()
select_keys2 = SelectKeys([key1])
select_keys2.register(trainer2)
trainer2.load_from_file(file)
assert state_dict_has_been_called[0]
if backend == "torch":
assert load_state_dict_has_been_called[0]
SelectKeys.state_dict = SelectKeys_state_dict
SelectKeys.load_state_dict = SelectKeys_load_state_dict
@pytest.mark.parametrize("prioritized", [False, True])
class TestRB:
def test_rb_trainer(self, prioritized):
torch.manual_seed(0)
trainer = mocking_trainer()
S = 100
storage = ListStorage(S)
if prioritized:
replay_buffer = TensorDictPrioritizedReplayBuffer(
alpha=1.1, beta=0.9, storage=storage
)
else:
replay_buffer = TensorDictReplayBuffer(storage=storage)
N = 9
rb_trainer = ReplayBufferTrainer(replay_buffer=replay_buffer, batch_size=N)
rb_trainer.register(trainer)
key1 = "first key"
key2 = "second key"
batch = 101
td = TensorDict(
{
key1: torch.randn(batch, 3),
key2: torch.randn(batch, 3),
},
[batch],
)
td_out = trainer._process_batch_hook(td)
assert td_out is td
td_out = trainer._process_optim_batch_hook(td)
assert td_out is not td
assert td_out.shape[0] == N
if prioritized:
td_out.set(replay_buffer.priority_key, torch.rand(N))
td_out = trainer._post_loss_hook(td_out)
if prioritized:
for idx in range(min(S, batch)):
if idx in td_out.get("index"):
assert replay_buffer._sampler._sum_tree[idx] != 1.0
else:
assert replay_buffer._sampler._sum_tree[idx] == 1.0
@pytest.mark.parametrize(
"storage_type",
[
"memmap",
"list",
],
)
def test_rb_trainer_state_dict(self, prioritized, storage_type):
torch.manual_seed(0)
trainer = mocking_trainer()
S = 100
if storage_type == "list":
storage = ListStorage(S)
elif storage_type == "memmap":
storage = LazyMemmapStorage(S)
else:
raise NotImplementedError
if prioritized:
replay_buffer = TensorDictPrioritizedReplayBuffer(
alpha=1.1,
beta=0.9,
storage=storage,
)
else:
replay_buffer = TensorDictReplayBuffer(
storage=storage,
)
N = 9
rb_trainer = ReplayBufferTrainer(replay_buffer=replay_buffer, batch_size=N)
rb_trainer.register(trainer)
key1 = "first key"
key2 = "second key"
batch = 101
td = TensorDict(
{
key1: torch.randn(batch, 3),
key2: torch.randn(batch, 3),
},
[batch],
)
trainer._process_batch_hook(td)
td_out = trainer._process_optim_batch_hook(td)
if prioritized:
td_out.unlock_().set(replay_buffer.priority_key, torch.rand(N))
trainer._post_loss_hook(td_out)
trainer2 = mocking_trainer()
if prioritized:
replay_buffer2 = TensorDictPrioritizedReplayBuffer(
alpha=1.1, beta=0.9, storage=storage
)
else:
replay_buffer2 = TensorDictReplayBuffer(storage=storage)
N = 9
rb_trainer2 = ReplayBufferTrainer(replay_buffer=replay_buffer2, batch_size=N)
rb_trainer2.register(trainer2)
sd = trainer.state_dict()
trainer2.load_state_dict(sd)
assert rb_trainer2.replay_buffer._writer._cursor > 0
assert (
rb_trainer2.replay_buffer._writer._cursor
== rb_trainer.replay_buffer._writer._cursor
)
if storage_type == "list":
assert len(rb_trainer2.replay_buffer._storage._storage) > 0
assert len(rb_trainer2.replay_buffer._storage._storage) == len(
rb_trainer.replay_buffer._storage._storage
)
for i, s in enumerate(rb_trainer2.replay_buffer._storage._storage):
assert (s == rb_trainer.replay_buffer._storage._storage[i]).all()
elif storage_type == "memmap":
assert rb_trainer2.replay_buffer._storage._len > 0
assert (
rb_trainer2.replay_buffer._storage._storage
== rb_trainer.replay_buffer._storage._storage
).all()
@pytest.mark.parametrize(
"storage_type",
[
"memmap",
"list",
"tensor",
],
)
@pytest.mark.parametrize(
"backend",
[
"torchsnapshot",
"torch",
],
)
@pytest.mark.parametrize(
"re_init",
[
False,
True,
],
)
def test_rb_trainer_save(
self, prioritized, storage_type, backend, re_init, S=10, batch=11, N=3
):
if not _has_ts and backend == "torchsnapshot":
pytest.skip("torchsnapshot not found")
torch.manual_seed(0)
# we overwrite the method to make sure that load_state_dict and state_dict are being called
state_dict_has_been_called = [False]
load_state_dict_has_been_called = [False]
state_dict_has_been_called_td = [False]
load_state_dict_has_been_called_td = [False]
ReplayBufferTrainer.state_dict, ReplayBufferTrainer_state_dict = _fun_checker(
ReplayBufferTrainer.state_dict, state_dict_has_been_called
)
(
ReplayBufferTrainer.load_state_dict,
ReplayBufferTrainer_load_state_dict,
) = _fun_checker(
ReplayBufferTrainer.load_state_dict, load_state_dict_has_been_called
)
TensorDict.state_dict, TensorDict_state_dict = _fun_checker(
TensorDict.state_dict, state_dict_has_been_called_td
)
TensorDict.load_state_dict, TensorDict_load_state_dict = _fun_checker(
TensorDict.load_state_dict, load_state_dict_has_been_called_td
)
os.environ["CKPT_BACKEND"] = backend
def make_storage():
if storage_type == "list":
storage = ListStorage(S)
elif storage_type == "tensor":
storage = LazyTensorStorage(S)
elif storage_type == "memmap":
storage = LazyMemmapStorage(S)
else:
raise NotImplementedError
return storage
with tempfile.TemporaryDirectory() as tmpdirname:
if backend == "torch":
file = path.join(tmpdirname, "file.pt")
elif backend == "torchsnapshot":
file = tmpdirname
else:
raise NotImplementedError
trainer = mocking_trainer(file)
storage = make_storage()
if prioritized:
replay_buffer = TensorDictPrioritizedReplayBuffer(
alpha=1.1,
beta=0.9,
storage=storage,
)
else:
replay_buffer = TensorDictReplayBuffer(
storage=storage,
)
rb_trainer = ReplayBufferTrainer(replay_buffer=replay_buffer, batch_size=N)
rb_trainer.register(trainer)
key1 = "first key"
key2 = "second key"
td = TensorDict(
{
key1: torch.randn(batch, 3),
key2: torch.randn(batch, 3),
},
[batch],
)
trainer._process_batch_hook(td)
# sample from rb
td_out = trainer._process_optim_batch_hook(td)
if prioritized:
td_out.unlock_().set(replay_buffer.priority_key, torch.rand(N))
trainer._post_loss_hook(td_out)
trainer.save_trainer(True)
trainer2 = mocking_trainer()
storage2 = make_storage()
if prioritized:
replay_buffer2 = TensorDictPrioritizedReplayBuffer(
alpha=1.1,
beta=0.9,
storage=storage2,
)
else:
replay_buffer2 = TensorDictReplayBuffer(
storage=storage2,
)
N = 9
rb_trainer2 = ReplayBufferTrainer(
replay_buffer=replay_buffer2, batch_size=N
)
rb_trainer2.register(trainer2)
if re_init:
trainer2._process_batch_hook(td.to_tensordict().zero_())
trainer2.load_from_file(file)
assert state_dict_has_been_called[0]
assert load_state_dict_has_been_called[0]
assert state_dict_has_been_called_td[0]
if re_init:
assert load_state_dict_has_been_called_td[0]
if backend != "torch":
td1 = (
storage._storage
) # trainer.app_state["state"]["replay_buffer.replay_buffer._storage._storage"]
td2 = trainer2._modules["replay_buffer"].replay_buffer._storage._storage
if storage_type == "list":
assert all((_td1 == _td2).all() for _td1, _td2 in zip(td1, td2))
assert all((_td1 is not _td2) for _td1, _td2 in zip(td1, td2))
assert storage2._storage is td2
else:
assert (td1 == td2).all()
assert td1 is not td2
if storage_type == "memmap":
assert td2.is_memmap()
assert storage2._storage is td2
ReplayBufferTrainer.state_dict = ReplayBufferTrainer_state_dict
ReplayBufferTrainer.load_state_dict = ReplayBufferTrainer_load_state_dict
TensorDict.state_dict = TensorDict_state_dict
TensorDict.load_state_dict = TensorDict_load_state_dict
class TestOptimizer:
@staticmethod
def _setup():
torch.manual_seed(0)
x = torch.randn(5, 10)
model1 = nn.Linear(10, 20)
model2 = nn.Linear(10, 20)
td = TensorDict(
{
"loss_1": model1(x).sum(),
"loss_2": model2(x).sum(),
},
batch_size=[],
)
model1_params = list(model1.parameters())
model2_params = list(model2.parameters())
all_params = model1_params + model2_params
return model1_params, model2_params, all_params, td
def test_optimizer_set_as_argument(self):
_, _, all_params, td = self._setup()
optimizer = torch.optim.SGD(all_params, lr=1e-3)
trainer = mocking_trainer(optimizer=optimizer)
params_before = [torch.clone(p) for p in all_params]
td_out = trainer._optimizer_hook(td)
params_after = all_params
assert "grad_norm_0" in td_out.keys()
assert all(
not torch.equal(p_before, p_after)
for p_before, p_after in zip(params_before, params_after)
)
def test_optimizer_set_as_hook(self):
_, _, all_params, td = self._setup()
optimizer = torch.optim.SGD(all_params, lr=1e-3)
trainer = mocking_trainer(optimizer=None)
hook = OptimizerHook(optimizer)
hook.register(trainer)
params_before = [torch.clone(p) for p in all_params]
td_out = trainer._optimizer_hook(td)
params_after = all_params
assert "grad_norm_0" in td_out.keys()
assert all(
not torch.equal(p_before, p_after)
for p_before, p_after in zip(params_before, params_after)
)
def test_optimizer_no_optimizer(self):
_, _, all_params, td = self._setup()
trainer = mocking_trainer(optimizer=None)
params_before = [torch.clone(p) for p in all_params]
td_out = trainer._optimizer_hook(td)
params_after = all_params
assert not [key for key in td_out.keys() if key.startswith("grad_norm_")]
assert all(
torch.equal(p_before, p_after)
for p_before, p_after in zip(params_before, params_after)
)
def test_optimizer_hook_loss_components_empty(self):
model = nn.Linear(10, 20)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
with pytest.raises(ValueError, match="loss_components list cannot be empty"):
OptimizerHook(optimizer, loss_components=[])
def test_optimizer_hook_loss_components_partial(self):
model1_params, model2_params, all_params, td = self._setup()
optimizer = torch.optim.SGD(all_params, lr=1e-3)
trainer = mocking_trainer(optimizer=None)
hook = OptimizerHook(optimizer, loss_components=["loss_1"])
hook.register(trainer)
model1_params_before = [torch.clone(p) for p in model1_params]
model2_params_before = [torch.clone(p) for p in model2_params]
td_out = trainer._optimizer_hook(td)
model1_params_after = model1_params
model2_params_after = model2_params
assert "grad_norm_0" in td_out.keys()
assert all(
not torch.equal(p_before, p_after)
for p_before, p_after in zip(model1_params_before, model1_params_after)
)
assert all(
torch.equal(p_before, p_after)
for p_before, p_after in zip(model2_params_before, model2_params_after)
)
def test_optimizer_hook_loss_components_none(self):
model1_params, model2_params, all_params, td = self._setup()
optimizer = torch.optim.SGD(all_params, lr=1e-3)
trainer = mocking_trainer(optimizer=None)
hook = OptimizerHook(optimizer, loss_components=None)
hook.register(trainer)
model1_params_before = [torch.clone(p) for p in model1_params]
model2_params_before = [torch.clone(p) for p in model2_params]
td_out = trainer._optimizer_hook(td)
model1_params_after = model1_params
model2_params_after = model2_params
assert "grad_norm_0" in td_out.keys()
assert all(
not torch.equal(p_before, p_after)
for p_before, p_after in zip(model1_params_before, model1_params_after)
)
assert all(
not torch.equal(p_before, p_after)
for p_before, p_after in zip(model2_params_before, model2_params_after)
)
def test_optimizer_multiple_hooks(self):
model1_params, model2_params, _, td = self._setup()
trainer = mocking_trainer(optimizer=None)
optimizer1 = torch.optim.SGD(model1_params, lr=1e-3)
hook1 = OptimizerHook(optimizer1, loss_components=["loss_1"])
hook1.register(trainer, name="optimizer1")
optimizer2 = torch.optim.Adam(model2_params, lr=1e-4)
hook2 = OptimizerHook(optimizer2, loss_components=["loss_2"])
hook2.register(trainer, name="optimizer2")
model1_params_before = [torch.clone(p) for p in model1_params]
model2_params_before = [torch.clone(p) for p in model2_params]
td_out = trainer._optimizer_hook(td)
model1_params_after = model1_params
model2_params_after = model2_params
assert "grad_norm_0" in td_out.keys()
assert "grad_norm_1" in td_out.keys()
assert all(
not torch.equal(p_before, p_after)
for p_before, p_after in zip(model1_params_before, model1_params_after)
)
assert all(
not torch.equal(p_before, p_after)
for p_before, p_after in zip(model2_params_before, model2_params_after)
)
class TestLogReward:
@pytest.mark.parametrize("logname", ["a", "b"])
@pytest.mark.parametrize("pbar", [True, False])
def test_log_reward(self, logname, pbar):
trainer = mocking_trainer()
trainer.collected_frames = 0
log_reward = LogReward(logname, log_pbar=pbar)
trainer.register_op("pre_steps_log", log_reward)
td = TensorDict({REWARD_KEY: torch.ones(3)}, [3])
trainer._pre_steps_log_hook(td)
if _has_tqdm and pbar:
assert trainer._pbar_str[logname] == 1
else:
assert logname not in trainer._pbar_str
assert trainer._log_dict[logname][-1] == 1
@pytest.mark.parametrize("logname", ["a", "b"])
@pytest.mark.parametrize("pbar", [True, False])
def test_log_reward_register(self, logname, pbar):
trainer = mocking_trainer()
trainer.collected_frames = 0
log_reward = LogReward(logname, log_pbar=pbar)
log_reward.register(trainer)
td = TensorDict({REWARD_KEY: torch.ones(3)}, [3])
trainer._pre_steps_log_hook(td)
if _has_tqdm and pbar:
assert trainer._pbar_str[logname] == 1
else:
assert logname not in trainer._pbar_str
assert trainer._log_dict[logname][-1] == 1
class TestRewardNorm:
def test_reward_norm(self):
torch.manual_seed(0)
trainer = mocking_trainer()
reward_normalizer = RewardNormalizer()
reward_normalizer.register(trainer)
batch = 10
reward = torch.randn(batch, 1)
td = TensorDict({REWARD_KEY: reward.clone()}, [batch])
td_out = trainer._process_batch_hook(td)
assert (td_out.get(REWARD_KEY) == reward).all()
assert not reward_normalizer._normalize_has_been_called
td_norm = trainer._process_optim_batch_hook(td)
assert reward_normalizer._normalize_has_been_called
torch.testing.assert_close(td_norm.get(REWARD_KEY).mean(), torch.zeros([]))
torch.testing.assert_close(td_norm.get(REWARD_KEY).std(), torch.ones([]))
def test_reward_norm_state_dict(self):
torch.manual_seed(0)
trainer = mocking_trainer()
reward_normalizer = RewardNormalizer()
reward_normalizer.register(trainer)
batch = 10
reward = torch.randn(batch, 1)
td = TensorDict({REWARD_KEY: reward.clone()}, [batch])
trainer._process_batch_hook(td)
trainer._process_optim_batch_hook(td)
state_dict = trainer.state_dict()
trainer2 = mocking_trainer()
reward_normalizer2 = RewardNormalizer()
reward_normalizer2.register(trainer2)
trainer2.load_state_dict(state_dict)
for key, item in reward_normalizer._reward_stats.items():
assert item == reward_normalizer2._reward_stats[key]
@pytest.mark.parametrize(
"backend",
[
"torchsnapshot",
"torch",
],
)
def test_reward_norm_save(self, backend):
if not _has_ts and backend == "torchsnapshot":
pytest.skip("torchsnapshot not found")
os.environ["CKPT_BACKEND"] = backend
state_dict_has_been_called = [False]
load_state_dict_has_been_called = [False]
RewardNormalizer.state_dict, RewardNormalizer_state_dict = _fun_checker(
RewardNormalizer.state_dict, state_dict_has_been_called
)
(
RewardNormalizer.load_state_dict,
RewardNormalizer_load_state_dict,
) = _fun_checker(
RewardNormalizer.load_state_dict, load_state_dict_has_been_called
)
torch.manual_seed(0)
with tempfile.TemporaryDirectory() as tmpdirname:
if backend == "torch":
file = path.join(tmpdirname, "file.pt")
elif backend == "torchsnapshot":
file = tmpdirname
else:
raise NotImplementedError
trainer = mocking_trainer(file)
reward_normalizer = RewardNormalizer()
reward_normalizer.register(trainer)
batch = 10
reward = torch.randn(batch, 1)
td = TensorDict({REWARD_KEY: reward.clone()}, [batch])
trainer._process_batch_hook(td)
trainer._process_optim_batch_hook(td)
trainer.save_trainer(True)
trainer2 = mocking_trainer()
reward_normalizer2 = RewardNormalizer()
reward_normalizer2.register(trainer2)
trainer2.load_from_file(file)
RewardNormalizer.state_dict = RewardNormalizer_state_dict
RewardNormalizer.load_state_dict = RewardNormalizer_load_state_dict
def test_masking():
torch.manual_seed(0)
trainer = mocking_trainer()
trainer.register_op("batch_process", mask_batch)
batch = 10
td = TensorDict(
{
("collector", "mask"): torch.zeros(batch, dtype=torch.bool).bernoulli_(),
"tensor": torch.randn(batch, 51),
},
[batch],
)
td_out = trainer._process_batch_hook(td)
assert td_out.shape[0] == td.get(("collector", "mask")).sum()
assert (td["tensor"][td[("collector", "mask")]] == td_out["tensor"]).all()
class TestSubSampler:
def test_subsampler(self):
torch.manual_seed(0)
trainer = mocking_trainer()
batch_size = 10
sub_traj_len = 5
key1 = "key1"
key2 = "key2"
subsampler = BatchSubSampler(batch_size=batch_size, sub_traj_len=sub_traj_len)
subsampler.register(trainer)
td = TensorDict(
{
key1: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0),
key2: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0),
},
[2, 10],
)
td_out = trainer._process_optim_batch_hook(td)
assert td_out.shape == torch.Size([batch_size // sub_traj_len, sub_traj_len])
assert (td_out.get(key1) == td_out.get(key2)).all()
def test_subsampler_state_dict(self):
trainer = mocking_trainer()
batch_size = 10
sub_traj_len = 5
key1 = "key1"
key2 = "key2"
subsampler = BatchSubSampler(batch_size=batch_size, sub_traj_len=sub_traj_len)
subsampler.register(trainer)
td = TensorDict(
{
key1: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0),
key2: torch.stack([torch.arange(0, 10), torch.arange(10, 20)], 0),
},
[2, 10],
)
torch.manual_seed(0)
td0 = trainer._process_optim_batch_hook(td)
trainer2 = mocking_trainer()
subsampler2 = BatchSubSampler(batch_size=batch_size, sub_traj_len=sub_traj_len)
subsampler2.register(trainer2)
trainer2.load_state_dict(trainer.state_dict())
torch.manual_seed(0)
td1 = trainer2._process_optim_batch_hook(td)
assert (td0 == td1).all()
@pytest.mark.skipif(not _has_gym, reason="No gym library")
@pytest.mark.skipif(not _has_tb, reason="No tensorboard library")
class TestRecorder:
def _get_args(self):
args = Namespace()
args.env_name = PONG_VERSIONED()
args.env_task = ""
args.grayscale = True
args.env_library = "gym"
args.frame_skip = 1
args.center_crop = []
args.from_pixels = True
args.vecnorm = False
args.norm_rewards = False
args.reward_scaling = 1.0
args.reward_loc = 0.0
args.noops = 0
args.record_frames = 24 // args.frame_skip
args.record_interval = 2
args.catframes = 4
args.image_size = 84
args.collector_device = ["cpu"]
args.categorical_action_encoding = False
return args
def test_recorder(self, N=8):
args = self._get_args()
with tempfile.TemporaryDirectory() as folder:
logger = TensorboardLogger(exp_name=folder)
environment = transformed_env_constructor(
args,
video_tag="tmp",
norm_obs_only=True,
stats={"loc": 0, "scale": 1},
logger=logger,
)()
recorder = Recorder(
record_frames=args.record_frames,
frame_skip=args.frame_skip,
policy_exploration=None,
environment=environment,
record_interval=args.record_interval,
)
trainer = mocking_trainer()
recorder.register(trainer)
for _ in range(N):
recorder(None)
for (_, _, filenames) in walk(folder):
filename = filenames[0]
break
for _ in range(3):
ea = event_accumulator.EventAccumulator(
path.join(folder, filename),
size_guidance={
event_accumulator.IMAGES: 0,
},
)
ea.Reload()
img = ea.Images(f"tmp_{PONG_VERSIONED()}_video")
try:
assert len(img) == N // args.record_interval
break
except AssertionError:
sleep(0.1)
@pytest.mark.parametrize(
"backend",
[
"torchsnapshot",
"torch",
],
)
def test_recorder_load(self, backend, N=8):
if not _has_ts and backend == "torchsnapshot":
pytest.skip("torchsnapshot not found")
os.environ["CKPT_BACKEND"] = backend
state_dict_has_been_called = [False]
load_state_dict_has_been_called = [False]
Recorder.state_dict, Recorder_state_dict = _fun_checker(
Recorder.state_dict, state_dict_has_been_called
)
(
Recorder.load_state_dict,
Recorder_load_state_dict,
) = _fun_checker(Recorder.load_state_dict, load_state_dict_has_been_called)
args = self._get_args()
def _make_recorder_and_trainer(tmpdirname):
logger = TensorboardLogger(exp_name=f"{tmpdirname}/tb")
if backend == "torch":
file = path.join(tmpdirname, "file.pt")
elif backend == "torchsnapshot":
file = tmpdirname
else:
raise NotImplementedError
trainer = mocking_trainer(file)
environment = transformed_env_constructor(
args,
video_tag="tmp",
norm_obs_only=True,
stats={"loc": 0, "scale": 1},
logger=logger,
)()
environment.rollout(2)
recorder = Recorder(
record_frames=args.record_frames,
frame_skip=args.frame_skip,
policy_exploration=None,
environment=environment,
record_interval=args.record_interval,
)
recorder.register(trainer)
return trainer, recorder, file
with tempfile.TemporaryDirectory() as tmpdirname:
trainer, recorder, file = _make_recorder_and_trainer(tmpdirname)
for _ in range(N):
recorder(None)
trainer.save_trainer(True)
with tempfile.TemporaryDirectory() as tmpdirname2:
trainer2, recorder2, _ = _make_recorder_and_trainer(tmpdirname2)
trainer2.load_from_file(file)
assert recorder2._count == 8
assert state_dict_has_been_called[0]
assert load_state_dict_has_been_called[0]
Recorder.state_dict = Recorder_state_dict
Recorder.load_state_dict = Recorder_load_state_dict
def test_updateweights():
torch.manual_seed(0)
trainer = mocking_trainer()
T = 5
update_weights = UpdateWeights(trainer.collector, T)
update_weights.register(trainer)
for t in range(T):
trainer._post_steps_hook()
assert trainer.collector.called_update_policy_weights_ is (t == T - 1)
assert trainer.collector.called_update_policy_weights_
class TestCountFrames:
def test_countframes(self):
torch.manual_seed(0)
trainer = mocking_trainer()
frame_skip = 3
batch = 10
count_frames = CountFramesLog(frame_skip=frame_skip)
count_frames.register(trainer)
td = TensorDict(
{("collector", "mask"): torch.zeros(batch, dtype=torch.bool).bernoulli_()},
[batch],
)
trainer._pre_steps_log_hook(td)
assert (