Skip to content

pypsa-meets-earth/earth-osm

Repository files navigation

earth-osm

Extract Infrastructure data from OpenStreetMap

Conda Downloads PyPI version Conda version codecov CI License: MIT Discord Docs

πŸ“š Overview

earth-osm downloads, filters, cleans and exports infrastructure data from OpenStreetMap (OSM). It provides a Python API and a CLI interface to extract data for various infrastructure types, such as power lines, substations, and more.

🌟 Key Features

  • πŸ”Œ Extracts infrastructure data from OSM
  • 🧹 Cleans and standardizes the data (coming soon)
  • πŸš€ No API rate limits (data served from GeoFabrik)
  • 🐍 Provides a Python API
  • πŸ–₯️ Supports multiprocessing for faster extraction
  • πŸ“Š Outputs data in .csv and .geojson formats
  • 🌍 Supports global data extraction
  • πŸ–±οΈ Easy-to-use CLI interface

πŸš€ Getting Started

Installation

Install earth-osm using pip (recommended):

pip install earth-osm

Or with conda:

conda install --channel=conda-forge earth-osm

Basic Usage

Extract OSM data using the CLI:

earth_osm extract power --regions benin monaco --features substation line

This command extracts power infrastructure data for Benin and Monaco, focusing on substations and power lines. By default, the resulting .csv and .geojson files are stored in ./earth_data/out.

Load the extracted data using pandas:

import pandas as pd
import geopandas as gpd

# For Pandas
df_substations = pd.read_csv('./earth_data/out/BJ_raw_substations.csv')

# For GeoPandas
gdf_substations = gpd.read_file('./earth_data/out/BJ_raw_substations.geojson')

πŸ› οΈ CLI Reference

Extract Command

earth_osm extract <primary> --regions <region1> <region2> ... [options]

Arguments:

  • <primary>: Primary feature to extract (e.g power)

Required Options:

  • --regions: Specify one or more regions using ISO 3166-1 alpha-2, ISO 3166-2 codes, or full names

Tip: A list of regions is available at regions.md

Optional Arguments:

Argument Description Default
--features Specify sub-features of the primary feature All features
--update Update existing data False
--no_mp Disable multiprocessing False (MP enabled)
--data_dir Path to data directory './earth_data'
--out_dir Path to output directory Same as data_dir
--out_format Export format(s): csv and/or geojson ['csv', 'geojson']
--agg_feature Aggregate outputs by feature False
--agg_region Aggregate outputs by region False

🐍 Python API

For more advanced usage, you can use the Python API:

import earth_osm as eo

eo.save_osm_data(
    primary_name='power',
    region_list=['benin', 'monaco'],
    feature_list=['substation', 'line'],
    update=False,
    mp=True,
    data_dir='./earth_data',
    out_format=['csv', 'geojson'],
    out_aggregate=False,
)

πŸ› οΈ Development

To contribute to earth-osm, follow these steps:

  1. (Optional) Install a specific version of earth_osm:

    pip install git+https://github.com/pypsa-meets-earth/earth-osm.git@<required-commit-hash>
  2. (Optional) Create a virtual environment for Python >=3.10:

    python3 -m venv .venv
    source .venv/bin/activate
  3. Install the development dependencies:

    pip install git+https://github.com/pypsa-meets-earth/earth-osm.git
    pip install -r requirements-test.txt
  4. Read the CONTRIBUTING.md file for more detailed information on how to contribute to the project.

πŸ“„ License

This project is licensed under the MIT License. See the LICENSE file for details.

🀝 Community

Join our Discord community to connect with other users and contributors, ask questions, and get support.

πŸ“š Documentation

For more detailed information, check out our full documentation.


Made with ❀️ by the PyPSA meets Earth team

earth-osm logo