forked from yenchenlin/nerf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_nerf_helpers.py
265 lines (224 loc) · 10.5 KB
/
run_nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
# torch.autograd.set_detect_anomaly(True)
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# Misc
img2mse = lambda x, y : torch.mean((x - y) ** 2)
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
# Positional encoding (section 5.1)
class Embedder:
# 构造位置编码转换器
def __init__(self, **kwargs):
# 传入参数
self.kwargs = kwargs
# 创建位置编码
self.create_embedding_fn()
def create_embedding_fn(self):
# 读取参数
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
# 如果包含输入就将编码前的值并入位置编码后的结果
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
# 两种表达形式
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
# 按照参考函数生成最后的位置编码,使用的是sin,cos。
# 并改变输出维度
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, i=0):
# 如果不使用位置编码返回三个通道,此时的位置编码为恒等函数,f(x) = x。
if i == -1:
return nn.Identity(), 3
# multiries 为频率,视角频率为 4,坐标为 10。
embed_kwargs = {
'include_input' : True,
'input_dims' : 3,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
# 可以更换位置编码的形式
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
# Model
class NeRF(nn.Module):
# 定义 NeRF 网络
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, output_ch=4, skips=[4], use_viewdirs=False):
"""
"""
super(NeRF, self).__init__()
# 网络层数
self.D = D
# 网络宽度
self.W = W
# 输入维度
self.input_ch = input_ch
# 输入视角信息
self.input_ch_views = input_ch_views
# 拼接,论文的网络图里面每经过一定层数就会把输入值拼接到网络里
self.skips = skips
# 是否使用视角
self.use_viewdirs = use_viewdirs
# 第一层是 input_ch -> w
# 不拼接输入的层为 w -> w
# 需要拼接输入的层为 w + input_ch -> w
# 这里面写得比较简单,只使用了一个简单的列表推导式实现
self.pts_linears = nn.ModuleList(
[nn.Linear(input_ch, W)] + [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
# 下面是输入视角信息的层,拼接了视角信息,输出减半
self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
### Implementation according to the paper
# self.views_linears = nn.ModuleList(
# [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])
if use_viewdirs:
# 使用视角的话,先经过全连接层
self.feature_linear = nn.Linear(W, W)
# 分别输出体密度和 rgb
self.alpha_linear = nn.Linear(W, 1)
self.rgb_linear = nn.Linear(W//2, 3)
else:
# 否则输出一个四通道的张量,分别代表体密度和 RGB
self.output_linear = nn.Linear(W, output_ch)
# 前向传播
def forward(self, x):
# 将读入的位置信息和视角信息分开
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
# 先将位置信息经过全连接层
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = F.relu(h)
# 碰到 skip 就将输入并入
if i in self.skips:
h = torch.cat([input_pts, h], -1)
# 根据使用视角信息确定网络尾部
if self.use_viewdirs:
alpha = self.alpha_linear(h)
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = F.relu(h)
rgb = self.rgb_linear(h)
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
# 返回输出结果
return outputs
def load_weights_from_keras(self, weights):
assert self.use_viewdirs, "Not implemented if use_viewdirs=False"
# Load pts_linears
for i in range(self.D):
idx_pts_linears = 2 * i
self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears]))
self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1]))
# Load feature_linear
idx_feature_linear = 2 * self.D
self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear]))
self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1]))
# Load views_linears
idx_views_linears = 2 * self.D + 2
self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears]))
self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1]))
# Load rgb_linear
idx_rbg_linear = 2 * self.D + 4
self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear]))
self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1]))
# Load alpha_linear
idx_alpha_linear = 2 * self.D + 6
self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear]))
self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1]))
# Ray helpers
def get_rays(H, W, K, c2w):
i, j = torch.meshgrid(torch.linspace(0, W-1, W), torch.linspace(0, H-1, H)) # pytorch's meshgrid has indexing='ij'
i = i.t()
j = j.t()
dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,-1].expand(rays_d.shape)
return rays_o, rays_d
def get_rays_np(H, W, K, c2w):
# 将每个像素的位置生成i、j
i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
# 按照方向压缩坐标
dirs = np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
# 将相机坐标系下的射线转换到世界坐标系下
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
# rays_o 为相机原点,每幅图像800*800对应一个相机原点
rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
return rays_o, rays_d
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# Shift ray origins to near plane
t = -(near + rays_o[...,2]) / rays_d[...,2]
rays_o = rays_o + t[...,None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
o2 = 1. + 2. * near / rays_o[...,2]
d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
d2 = -2. * near / rays_o[...,2]
rays_o = torch.stack([o0,o1,o2], -1)
rays_d = torch.stack([d0,d1,d2], -1)
return rays_o, rays_d
# Hierarchical sampling (section 5.2)
def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
# Take uniform samples
if det:
u = torch.linspace(0., 1., steps=N_samples)
u = u.expand(list(cdf.shape[:-1]) + [N_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
new_shape = list(cdf.shape[:-1]) + [N_samples]
if det:
u = np.linspace(0., 1., N_samples)
u = np.broadcast_to(u, new_shape)
else:
u = np.random.rand(*new_shape)
u = torch.Tensor(u)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds-1), inds-1)
above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
# cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
# bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[...,1]-cdf_g[...,0])
denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
t = (u-cdf_g[...,0])/denom
samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
return samples