Skip to content

programmerjake/algebraics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Algebraic Numbers Library

Use when you need exact arithmetic, speed is not critical, and rational numbers aren't good enough.

Example:

use algebraics::prelude::*;
use algebraics::RealAlgebraicNumber as Number;

let two = Number::from(2);

// 2 is a rational number
assert!(two.is_rational());

// 1/2 is the reciprocal of 2
let one_half = two.recip();

// 1/2 is also a rational number
assert!(one_half.is_rational());

// 2^(1/4)
let root = (&two).pow((1, 4));

// we can use all the standard comparison operators
assert!(root != Number::from(3));
assert!(root < Number::from(2));
assert!(root > Number::from(1));

// we can use all of add, subtract, multiply, divide, and remainder
let sum = &root + &root;
let difference = &root - Number::from(47);
let product = &root * &one_half;
let quotient = &one_half / &root;
let remainder = &root % &one_half;

// root is not a rational number
assert!(!root.is_rational());

// the calculations are always exact
assert_eq!((&root).pow(4), two);

// lets compute 30 decimal places of root
let scale = Number::from(10).pow(30);
let scaled = &root * scale;
let digits = scaled.into_integer_trunc();
assert_eq!(
    digits.to_string(),
    1_18920_71150_02721_06671_74999_70560u128.to_string()
);

// get the minimal polynomial
let other_number = root + two.pow((1, 2));
assert_eq!(
    &other_number.minimal_polynomial().to_string(),
    "2 + -8*X + -4*X^2 + 0*X^3 + 1*X^4"
);

// works with really big numbers
let really_big = Number::from(1_00000_00000i64).pow(20) + Number::from(23);
assert_eq!(
    &really_big.to_integer_floor().to_string(),
    "100000000000000000000000000000000000000000000\
     000000000000000000000000000000000000000000000\
     000000000000000000000000000000000000000000000\
     000000000000000000000000000000000000000000000\
     000000000000000000023"
)