forked from Alibaba-AAIG/SSL-FEW-SHOT
-
Notifications
You must be signed in to change notification settings - Fork 2
/
mini_from_mini80_ssl_sl_5shot_5way.log
20320 lines (20320 loc) · 709 KB
/
mini_from_mini80_ssl_sl_5shot_5way.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{'dataset': 'MiniImageNet',
'gamma': 0.5,
'gpu': '4',
'init_weights': './saves/initialization/miniimagenet/mini_imagenet_ndf192_rkhs1536_d8_w_label_amdim_cpt.pth',
'lr': 0.0001,
'max_epoch': 100,
'model_type': 'AmdimNet',
'nd': 8,
'ndf': 192,
'query': 15,
'rkhs': 1536,
'save_path': './MINI_ProtoNet_MINI_SSL_SUP_5shot_5way/',
'shot': 5,
'step_size': 10,
'temperature': 128.0,
'way': 5}
using gpu: 4
Using a 128x128 encoder
epoch 1, train 1/100, loss=0.1890 acc=0.9867
epoch 1, train 2/100, loss=0.1918 acc=1.0000
epoch 1, train 3/100, loss=0.2210 acc=0.9867
epoch 1, train 4/100, loss=0.2088 acc=0.9733
epoch 1, train 5/100, loss=0.1522 acc=0.9867
epoch 1, train 6/100, loss=0.1356 acc=0.9867
epoch 1, train 7/100, loss=0.1400 acc=1.0000
epoch 1, train 8/100, loss=0.1324 acc=0.9867
epoch 1, train 9/100, loss=0.1434 acc=1.0000
epoch 1, train 10/100, loss=0.1179 acc=1.0000
epoch 1, train 11/100, loss=0.1134 acc=1.0000
epoch 1, train 12/100, loss=0.0915 acc=1.0000
epoch 1, train 13/100, loss=0.1068 acc=1.0000
epoch 1, train 14/100, loss=0.1090 acc=1.0000
epoch 1, train 15/100, loss=0.1135 acc=0.9867
epoch 1, train 16/100, loss=0.1193 acc=1.0000
epoch 1, train 17/100, loss=0.0716 acc=1.0000
epoch 1, train 18/100, loss=0.0738 acc=1.0000
epoch 1, train 19/100, loss=0.1088 acc=1.0000
epoch 1, train 20/100, loss=0.0812 acc=1.0000
epoch 1, train 21/100, loss=0.1311 acc=0.9867
epoch 1, train 22/100, loss=0.0687 acc=1.0000
epoch 1, train 23/100, loss=0.1054 acc=1.0000
epoch 1, train 24/100, loss=0.0595 acc=1.0000
epoch 1, train 25/100, loss=0.0541 acc=1.0000
epoch 1, train 26/100, loss=0.0665 acc=1.0000
epoch 1, train 27/100, loss=0.0527 acc=1.0000
epoch 1, train 28/100, loss=0.0826 acc=1.0000
epoch 1, train 29/100, loss=0.0892 acc=1.0000
epoch 1, train 30/100, loss=0.0710 acc=1.0000
epoch 1, train 31/100, loss=0.0478 acc=1.0000
epoch 1, train 32/100, loss=0.1330 acc=0.9600
epoch 1, train 33/100, loss=0.0609 acc=1.0000
epoch 1, train 34/100, loss=0.0729 acc=0.9867
epoch 1, train 35/100, loss=0.0669 acc=1.0000
epoch 1, train 36/100, loss=0.0749 acc=1.0000
epoch 1, train 37/100, loss=0.0747 acc=0.9867
epoch 1, train 38/100, loss=0.0520 acc=1.0000
epoch 1, train 39/100, loss=0.0516 acc=1.0000
epoch 1, train 40/100, loss=0.0495 acc=1.0000
epoch 1, train 41/100, loss=0.0526 acc=1.0000
epoch 1, train 42/100, loss=0.0939 acc=0.9867
epoch 1, train 43/100, loss=0.0692 acc=1.0000
epoch 1, train 44/100, loss=0.0711 acc=0.9867
epoch 1, train 45/100, loss=0.0376 acc=1.0000
epoch 1, train 46/100, loss=0.0617 acc=1.0000
epoch 1, train 47/100, loss=0.0788 acc=1.0000
epoch 1, train 48/100, loss=0.0426 acc=1.0000
epoch 1, train 49/100, loss=0.0692 acc=0.9867
epoch 1, train 50/100, loss=0.0520 acc=1.0000
epoch 1, train 51/100, loss=0.0882 acc=0.9867
epoch 1, train 52/100, loss=0.0372 acc=1.0000
epoch 1, train 53/100, loss=0.0404 acc=1.0000
epoch 1, train 54/100, loss=0.0439 acc=1.0000
epoch 1, train 55/100, loss=0.0915 acc=0.9867
epoch 1, train 56/100, loss=0.0351 acc=1.0000
epoch 1, train 57/100, loss=0.0313 acc=1.0000
epoch 1, train 58/100, loss=0.0229 acc=1.0000
epoch 1, train 59/100, loss=0.0597 acc=1.0000
epoch 1, train 60/100, loss=0.0582 acc=1.0000
epoch 1, train 61/100, loss=0.0318 acc=1.0000
epoch 1, train 62/100, loss=0.0730 acc=1.0000
epoch 1, train 63/100, loss=0.0624 acc=1.0000
epoch 1, train 64/100, loss=0.0448 acc=1.0000
epoch 1, train 65/100, loss=0.0270 acc=1.0000
epoch 1, train 66/100, loss=0.0403 acc=1.0000
epoch 1, train 67/100, loss=0.0486 acc=1.0000
epoch 1, train 68/100, loss=0.0410 acc=1.0000
epoch 1, train 69/100, loss=0.0626 acc=1.0000
epoch 1, train 70/100, loss=0.0310 acc=1.0000
epoch 1, train 71/100, loss=0.0343 acc=1.0000
epoch 1, train 72/100, loss=0.0438 acc=1.0000
epoch 1, train 73/100, loss=0.0221 acc=1.0000
epoch 1, train 74/100, loss=0.0453 acc=1.0000
epoch 1, train 75/100, loss=0.0342 acc=1.0000
epoch 1, train 76/100, loss=0.0357 acc=1.0000
epoch 1, train 77/100, loss=0.0492 acc=1.0000
epoch 1, train 78/100, loss=0.0365 acc=1.0000
epoch 1, train 79/100, loss=0.0529 acc=1.0000
epoch 1, train 80/100, loss=0.0377 acc=1.0000
epoch 1, train 81/100, loss=0.0255 acc=1.0000
epoch 1, train 82/100, loss=0.0425 acc=1.0000
epoch 1, train 83/100, loss=0.0214 acc=1.0000
epoch 1, train 84/100, loss=0.0354 acc=1.0000
epoch 1, train 85/100, loss=0.0627 acc=1.0000
epoch 1, train 86/100, loss=0.0418 acc=1.0000
epoch 1, train 87/100, loss=0.0463 acc=1.0000
epoch 1, train 88/100, loss=0.0231 acc=1.0000
epoch 1, train 89/100, loss=0.0461 acc=1.0000
epoch 1, train 90/100, loss=0.0373 acc=1.0000
epoch 1, train 91/100, loss=0.0446 acc=1.0000
epoch 1, train 92/100, loss=0.0483 acc=1.0000
epoch 1, train 93/100, loss=0.0516 acc=1.0000
epoch 1, train 94/100, loss=0.0265 acc=1.0000
epoch 1, train 95/100, loss=0.0189 acc=1.0000
epoch 1, train 96/100, loss=0.0438 acc=1.0000
epoch 1, train 97/100, loss=0.0361 acc=1.0000
epoch 1, train 98/100, loss=0.0315 acc=1.0000
epoch 1, train 99/100, loss=0.0319 acc=1.0000
epoch 1, train 100/100, loss=0.0306 acc=1.0000
best epoch 0, best val acc=0.0000
epoch 1, val, loss=0.0337 acc=0.9992
ETA:5m/8.4h
epoch 2, train 1/100, loss=0.0313 acc=1.0000
epoch 2, train 2/100, loss=0.0364 acc=1.0000
epoch 2, train 3/100, loss=0.0321 acc=1.0000
epoch 2, train 4/100, loss=0.0283 acc=1.0000
epoch 2, train 5/100, loss=0.0495 acc=0.9867
epoch 2, train 6/100, loss=0.0282 acc=1.0000
epoch 2, train 7/100, loss=0.0339 acc=1.0000
epoch 2, train 8/100, loss=0.0336 acc=1.0000
epoch 2, train 9/100, loss=0.0598 acc=1.0000
epoch 2, train 10/100, loss=0.0176 acc=1.0000
epoch 2, train 11/100, loss=0.0695 acc=1.0000
epoch 2, train 12/100, loss=0.0481 acc=1.0000
epoch 2, train 13/100, loss=0.0474 acc=1.0000
epoch 2, train 14/100, loss=0.0318 acc=1.0000
epoch 2, train 15/100, loss=0.0492 acc=1.0000
epoch 2, train 16/100, loss=0.0420 acc=1.0000
epoch 2, train 17/100, loss=0.0192 acc=1.0000
epoch 2, train 18/100, loss=0.0368 acc=1.0000
epoch 2, train 19/100, loss=0.0176 acc=1.0000
epoch 2, train 20/100, loss=0.0183 acc=1.0000
epoch 2, train 21/100, loss=0.0345 acc=1.0000
epoch 2, train 22/100, loss=0.0363 acc=1.0000
epoch 2, train 23/100, loss=0.0151 acc=1.0000
epoch 2, train 24/100, loss=0.0177 acc=1.0000
epoch 2, train 25/100, loss=0.0222 acc=1.0000
epoch 2, train 26/100, loss=0.0350 acc=1.0000
epoch 2, train 27/100, loss=0.0322 acc=1.0000
epoch 2, train 28/100, loss=0.0267 acc=1.0000
epoch 2, train 29/100, loss=0.0275 acc=1.0000
epoch 2, train 30/100, loss=0.0505 acc=1.0000
epoch 2, train 31/100, loss=0.0276 acc=1.0000
epoch 2, train 32/100, loss=0.0371 acc=1.0000
epoch 2, train 33/100, loss=0.0358 acc=1.0000
epoch 2, train 34/100, loss=0.0232 acc=1.0000
epoch 2, train 35/100, loss=0.0268 acc=1.0000
epoch 2, train 36/100, loss=0.0352 acc=1.0000
epoch 2, train 37/100, loss=0.0329 acc=1.0000
epoch 2, train 38/100, loss=0.0451 acc=1.0000
epoch 2, train 39/100, loss=0.0526 acc=1.0000
epoch 2, train 40/100, loss=0.0345 acc=1.0000
epoch 2, train 41/100, loss=0.0594 acc=1.0000
epoch 2, train 42/100, loss=0.0390 acc=1.0000
epoch 2, train 43/100, loss=0.0224 acc=1.0000
epoch 2, train 44/100, loss=0.0558 acc=1.0000
epoch 2, train 45/100, loss=0.0448 acc=1.0000
epoch 2, train 46/100, loss=0.0296 acc=1.0000
epoch 2, train 47/100, loss=0.0224 acc=1.0000
epoch 2, train 48/100, loss=0.0263 acc=1.0000
epoch 2, train 49/100, loss=0.0403 acc=1.0000
epoch 2, train 50/100, loss=0.0308 acc=1.0000
epoch 2, train 51/100, loss=0.0153 acc=1.0000
epoch 2, train 52/100, loss=0.0344 acc=1.0000
epoch 2, train 53/100, loss=0.0455 acc=1.0000
epoch 2, train 54/100, loss=0.0203 acc=1.0000
epoch 2, train 55/100, loss=0.0400 acc=1.0000
epoch 2, train 56/100, loss=0.0594 acc=1.0000
epoch 2, train 57/100, loss=0.0297 acc=1.0000
epoch 2, train 58/100, loss=0.0300 acc=1.0000
epoch 2, train 59/100, loss=0.0398 acc=1.0000
epoch 2, train 60/100, loss=0.0208 acc=1.0000
epoch 2, train 61/100, loss=0.0380 acc=0.9867
epoch 2, train 62/100, loss=0.0363 acc=1.0000
epoch 2, train 63/100, loss=0.0525 acc=0.9867
epoch 2, train 64/100, loss=0.0169 acc=1.0000
epoch 2, train 65/100, loss=0.0213 acc=1.0000
epoch 2, train 66/100, loss=0.0276 acc=1.0000
epoch 2, train 67/100, loss=0.0347 acc=1.0000
epoch 2, train 68/100, loss=0.0209 acc=1.0000
epoch 2, train 69/100, loss=0.0332 acc=1.0000
epoch 2, train 70/100, loss=0.0256 acc=1.0000
epoch 2, train 71/100, loss=0.0178 acc=1.0000
epoch 2, train 72/100, loss=0.0553 acc=1.0000
epoch 2, train 73/100, loss=0.0145 acc=1.0000
epoch 2, train 74/100, loss=0.0398 acc=1.0000
epoch 2, train 75/100, loss=0.0257 acc=1.0000
epoch 2, train 76/100, loss=0.0370 acc=1.0000
epoch 2, train 77/100, loss=0.0264 acc=1.0000
epoch 2, train 78/100, loss=0.0135 acc=1.0000
epoch 2, train 79/100, loss=0.0344 acc=1.0000
epoch 2, train 80/100, loss=0.0393 acc=1.0000
epoch 2, train 81/100, loss=0.0188 acc=1.0000
epoch 2, train 82/100, loss=0.0218 acc=1.0000
epoch 2, train 83/100, loss=0.0350 acc=1.0000
epoch 2, train 84/100, loss=0.0203 acc=1.0000
epoch 2, train 85/100, loss=0.0181 acc=1.0000
epoch 2, train 86/100, loss=0.0135 acc=1.0000
epoch 2, train 87/100, loss=0.0539 acc=1.0000
epoch 2, train 88/100, loss=0.0310 acc=1.0000
epoch 2, train 89/100, loss=0.0273 acc=1.0000
epoch 2, train 90/100, loss=0.0235 acc=1.0000
epoch 2, train 91/100, loss=0.0459 acc=1.0000
epoch 2, train 92/100, loss=0.0276 acc=1.0000
epoch 2, train 93/100, loss=0.0319 acc=1.0000
epoch 2, train 94/100, loss=0.0320 acc=1.0000
epoch 2, train 95/100, loss=0.0265 acc=1.0000
epoch 2, train 96/100, loss=0.0367 acc=1.0000
epoch 2, train 97/100, loss=0.0303 acc=1.0000
epoch 2, train 98/100, loss=0.0339 acc=1.0000
epoch 2, train 99/100, loss=0.0317 acc=1.0000
epoch 2, train 100/100, loss=0.0372 acc=1.0000
best epoch 1, best val acc=0.9992
epoch 2, val, loss=0.0230 acc=0.9994
ETA:10m/8.2h
epoch 3, train 1/100, loss=0.0216 acc=1.0000
epoch 3, train 2/100, loss=0.0138 acc=1.0000
epoch 3, train 3/100, loss=0.0394 acc=1.0000
epoch 3, train 4/100, loss=0.0186 acc=1.0000
epoch 3, train 5/100, loss=0.0233 acc=1.0000
epoch 3, train 6/100, loss=0.0337 acc=1.0000
epoch 3, train 7/100, loss=0.0188 acc=1.0000
epoch 3, train 8/100, loss=0.0392 acc=1.0000
epoch 3, train 9/100, loss=0.0148 acc=1.0000
epoch 3, train 10/100, loss=0.0192 acc=1.0000
epoch 3, train 11/100, loss=0.0348 acc=1.0000
epoch 3, train 12/100, loss=0.0239 acc=1.0000
epoch 3, train 13/100, loss=0.0256 acc=1.0000
epoch 3, train 14/100, loss=0.0210 acc=1.0000
epoch 3, train 15/100, loss=0.0381 acc=1.0000
epoch 3, train 16/100, loss=0.0416 acc=1.0000
epoch 3, train 17/100, loss=0.0193 acc=1.0000
epoch 3, train 18/100, loss=0.0260 acc=1.0000
epoch 3, train 19/100, loss=0.0318 acc=1.0000
epoch 3, train 20/100, loss=0.0308 acc=1.0000
epoch 3, train 21/100, loss=0.0294 acc=1.0000
epoch 3, train 22/100, loss=0.0221 acc=1.0000
epoch 3, train 23/100, loss=0.0234 acc=1.0000
epoch 3, train 24/100, loss=0.0353 acc=1.0000
epoch 3, train 25/100, loss=0.0106 acc=1.0000
epoch 3, train 26/100, loss=0.0253 acc=1.0000
epoch 3, train 27/100, loss=0.0222 acc=1.0000
epoch 3, train 28/100, loss=0.0370 acc=1.0000
epoch 3, train 29/100, loss=0.0181 acc=1.0000
epoch 3, train 30/100, loss=0.0327 acc=1.0000
epoch 3, train 31/100, loss=0.0268 acc=1.0000
epoch 3, train 32/100, loss=0.0505 acc=0.9867
epoch 3, train 33/100, loss=0.0201 acc=1.0000
epoch 3, train 34/100, loss=0.0172 acc=1.0000
epoch 3, train 35/100, loss=0.0091 acc=1.0000
epoch 3, train 36/100, loss=0.0289 acc=1.0000
epoch 3, train 37/100, loss=0.0215 acc=1.0000
epoch 3, train 38/100, loss=0.0208 acc=1.0000
epoch 3, train 39/100, loss=0.0155 acc=1.0000
epoch 3, train 40/100, loss=0.0300 acc=1.0000
epoch 3, train 41/100, loss=0.0271 acc=1.0000
epoch 3, train 42/100, loss=0.0296 acc=1.0000
epoch 3, train 43/100, loss=0.0247 acc=1.0000
epoch 3, train 44/100, loss=0.0175 acc=1.0000
epoch 3, train 45/100, loss=0.0180 acc=1.0000
epoch 3, train 46/100, loss=0.0182 acc=1.0000
epoch 3, train 47/100, loss=0.0295 acc=1.0000
epoch 3, train 48/100, loss=0.0367 acc=0.9867
epoch 3, train 49/100, loss=0.0196 acc=1.0000
epoch 3, train 50/100, loss=0.0321 acc=1.0000
epoch 3, train 51/100, loss=0.0194 acc=1.0000
epoch 3, train 52/100, loss=0.0315 acc=1.0000
epoch 3, train 53/100, loss=0.0373 acc=1.0000
epoch 3, train 54/100, loss=0.0092 acc=1.0000
epoch 3, train 55/100, loss=0.0538 acc=1.0000
epoch 3, train 56/100, loss=0.0292 acc=1.0000
epoch 3, train 57/100, loss=0.0374 acc=1.0000
epoch 3, train 58/100, loss=0.0167 acc=1.0000
epoch 3, train 59/100, loss=0.0271 acc=1.0000
epoch 3, train 60/100, loss=0.0150 acc=1.0000
epoch 3, train 61/100, loss=0.0232 acc=1.0000
epoch 3, train 62/100, loss=0.0107 acc=1.0000
epoch 3, train 63/100, loss=0.0223 acc=1.0000
epoch 3, train 64/100, loss=0.0285 acc=1.0000
epoch 3, train 65/100, loss=0.0122 acc=1.0000
epoch 3, train 66/100, loss=0.0141 acc=1.0000
epoch 3, train 67/100, loss=0.0200 acc=1.0000
epoch 3, train 68/100, loss=0.0241 acc=1.0000
epoch 3, train 69/100, loss=0.0398 acc=1.0000
epoch 3, train 70/100, loss=0.0296 acc=1.0000
epoch 3, train 71/100, loss=0.0409 acc=1.0000
epoch 3, train 72/100, loss=0.0341 acc=1.0000
epoch 3, train 73/100, loss=0.0185 acc=1.0000
epoch 3, train 74/100, loss=0.0260 acc=1.0000
epoch 3, train 75/100, loss=0.0247 acc=1.0000
epoch 3, train 76/100, loss=0.0263 acc=1.0000
epoch 3, train 77/100, loss=0.0236 acc=1.0000
epoch 3, train 78/100, loss=0.0260 acc=1.0000
epoch 3, train 79/100, loss=0.0238 acc=1.0000
epoch 3, train 80/100, loss=0.0255 acc=1.0000
epoch 3, train 81/100, loss=0.0311 acc=1.0000
epoch 3, train 82/100, loss=0.0099 acc=1.0000
epoch 3, train 83/100, loss=0.0159 acc=1.0000
epoch 3, train 84/100, loss=0.0172 acc=1.0000
epoch 3, train 85/100, loss=0.0233 acc=1.0000
epoch 3, train 86/100, loss=0.0440 acc=1.0000
epoch 3, train 87/100, loss=0.0208 acc=1.0000
epoch 3, train 88/100, loss=0.0275 acc=1.0000
epoch 3, train 89/100, loss=0.0313 acc=1.0000
epoch 3, train 90/100, loss=0.0249 acc=1.0000
epoch 3, train 91/100, loss=0.0121 acc=1.0000
epoch 3, train 92/100, loss=0.0084 acc=1.0000
epoch 3, train 93/100, loss=0.0318 acc=1.0000
epoch 3, train 94/100, loss=0.0279 acc=1.0000
epoch 3, train 95/100, loss=0.0211 acc=1.0000
epoch 3, train 96/100, loss=0.0206 acc=1.0000
epoch 3, train 97/100, loss=0.0120 acc=1.0000
epoch 3, train 98/100, loss=0.0574 acc=0.9867
epoch 3, train 99/100, loss=0.0218 acc=1.0000
epoch 3, train 100/100, loss=0.0449 acc=0.9867
best epoch 2, best val acc=0.9994
epoch 3, val, loss=0.0221 acc=0.9992
ETA:15m/8.1h
epoch 4, train 1/100, loss=0.0307 acc=1.0000
epoch 4, train 2/100, loss=0.0193 acc=1.0000
epoch 4, train 3/100, loss=0.0274 acc=1.0000
epoch 4, train 4/100, loss=0.0309 acc=1.0000
epoch 4, train 5/100, loss=0.0184 acc=1.0000
epoch 4, train 6/100, loss=0.0263 acc=1.0000
epoch 4, train 7/100, loss=0.0215 acc=1.0000
epoch 4, train 8/100, loss=0.0161 acc=1.0000
epoch 4, train 9/100, loss=0.0314 acc=1.0000
epoch 4, train 10/100, loss=0.0204 acc=1.0000
epoch 4, train 11/100, loss=0.0238 acc=1.0000
epoch 4, train 12/100, loss=0.0200 acc=1.0000
epoch 4, train 13/100, loss=0.0138 acc=1.0000
epoch 4, train 14/100, loss=0.0227 acc=1.0000
epoch 4, train 15/100, loss=0.0282 acc=1.0000
epoch 4, train 16/100, loss=0.0140 acc=1.0000
epoch 4, train 17/100, loss=0.0181 acc=1.0000
epoch 4, train 18/100, loss=0.0204 acc=1.0000
epoch 4, train 19/100, loss=0.0377 acc=1.0000
epoch 4, train 20/100, loss=0.0264 acc=1.0000
epoch 4, train 21/100, loss=0.0252 acc=1.0000
epoch 4, train 22/100, loss=0.0456 acc=1.0000
epoch 4, train 23/100, loss=0.0124 acc=1.0000
epoch 4, train 24/100, loss=0.0215 acc=1.0000
epoch 4, train 25/100, loss=0.0123 acc=1.0000
epoch 4, train 26/100, loss=0.0117 acc=1.0000
epoch 4, train 27/100, loss=0.0257 acc=1.0000
epoch 4, train 28/100, loss=0.0429 acc=1.0000
epoch 4, train 29/100, loss=0.0424 acc=1.0000
epoch 4, train 30/100, loss=0.0196 acc=1.0000
epoch 4, train 31/100, loss=0.0168 acc=1.0000
epoch 4, train 32/100, loss=0.0188 acc=1.0000
epoch 4, train 33/100, loss=0.0239 acc=1.0000
epoch 4, train 34/100, loss=0.0285 acc=1.0000
epoch 4, train 35/100, loss=0.0187 acc=1.0000
epoch 4, train 36/100, loss=0.0335 acc=1.0000
epoch 4, train 37/100, loss=0.0250 acc=1.0000
epoch 4, train 38/100, loss=0.0366 acc=0.9867
epoch 4, train 39/100, loss=0.0194 acc=1.0000
epoch 4, train 40/100, loss=0.0217 acc=1.0000
epoch 4, train 41/100, loss=0.0170 acc=1.0000
epoch 4, train 42/100, loss=0.0102 acc=1.0000
epoch 4, train 43/100, loss=0.0194 acc=1.0000
epoch 4, train 44/100, loss=0.0242 acc=1.0000
epoch 4, train 45/100, loss=0.0168 acc=1.0000
epoch 4, train 46/100, loss=0.0149 acc=1.0000
epoch 4, train 47/100, loss=0.0164 acc=1.0000
epoch 4, train 48/100, loss=0.0166 acc=1.0000
epoch 4, train 49/100, loss=0.0201 acc=1.0000
epoch 4, train 50/100, loss=0.0123 acc=1.0000
epoch 4, train 51/100, loss=0.0191 acc=1.0000
epoch 4, train 52/100, loss=0.0244 acc=1.0000
epoch 4, train 53/100, loss=0.0703 acc=0.9733
epoch 4, train 54/100, loss=0.0270 acc=1.0000
epoch 4, train 55/100, loss=0.0208 acc=1.0000
epoch 4, train 56/100, loss=0.0299 acc=1.0000
epoch 4, train 57/100, loss=0.0350 acc=1.0000
epoch 4, train 58/100, loss=0.0161 acc=1.0000
epoch 4, train 59/100, loss=0.0142 acc=1.0000
epoch 4, train 60/100, loss=0.0296 acc=1.0000
epoch 4, train 61/100, loss=0.0257 acc=0.9867
epoch 4, train 62/100, loss=0.0234 acc=1.0000
epoch 4, train 63/100, loss=0.0064 acc=1.0000
epoch 4, train 64/100, loss=0.0099 acc=1.0000
epoch 4, train 65/100, loss=0.0331 acc=1.0000
epoch 4, train 66/100, loss=0.0186 acc=1.0000
epoch 4, train 67/100, loss=0.0188 acc=1.0000
epoch 4, train 68/100, loss=0.0154 acc=1.0000
epoch 4, train 69/100, loss=0.0246 acc=1.0000
epoch 4, train 70/100, loss=0.0202 acc=1.0000
epoch 4, train 71/100, loss=0.0102 acc=1.0000
epoch 4, train 72/100, loss=0.0252 acc=1.0000
epoch 4, train 73/100, loss=0.0410 acc=1.0000
epoch 4, train 74/100, loss=0.0180 acc=1.0000
epoch 4, train 75/100, loss=0.0355 acc=1.0000
epoch 4, train 76/100, loss=0.0262 acc=1.0000
epoch 4, train 77/100, loss=0.0192 acc=1.0000
epoch 4, train 78/100, loss=0.0211 acc=1.0000
epoch 4, train 79/100, loss=0.0105 acc=1.0000
epoch 4, train 80/100, loss=0.0184 acc=1.0000
epoch 4, train 81/100, loss=0.0201 acc=1.0000
epoch 4, train 82/100, loss=0.0118 acc=1.0000
epoch 4, train 83/100, loss=0.0206 acc=1.0000
epoch 4, train 84/100, loss=0.0156 acc=1.0000
epoch 4, train 85/100, loss=0.0172 acc=1.0000
epoch 4, train 86/100, loss=0.0154 acc=1.0000
epoch 4, train 87/100, loss=0.0201 acc=1.0000
epoch 4, train 88/100, loss=0.0168 acc=1.0000
epoch 4, train 89/100, loss=0.0144 acc=1.0000
epoch 4, train 90/100, loss=0.0196 acc=1.0000
epoch 4, train 91/100, loss=0.0200 acc=1.0000
epoch 4, train 92/100, loss=0.0183 acc=1.0000
epoch 4, train 93/100, loss=0.0144 acc=1.0000
epoch 4, train 94/100, loss=0.0144 acc=1.0000
epoch 4, train 95/100, loss=0.0142 acc=1.0000
epoch 4, train 96/100, loss=0.0293 acc=0.9867
epoch 4, train 97/100, loss=0.0373 acc=0.9867
epoch 4, train 98/100, loss=0.0320 acc=1.0000
epoch 4, train 99/100, loss=0.0155 acc=1.0000
epoch 4, train 100/100, loss=0.0260 acc=1.0000
best epoch 2, best val acc=0.9994
epoch 4, val, loss=0.0190 acc=0.9995
ETA:19m/8.1h
epoch 5, train 1/100, loss=0.0185 acc=1.0000
epoch 5, train 2/100, loss=0.0266 acc=1.0000
epoch 5, train 3/100, loss=0.0259 acc=1.0000
epoch 5, train 4/100, loss=0.0169 acc=1.0000
epoch 5, train 5/100, loss=0.0179 acc=1.0000
epoch 5, train 6/100, loss=0.0146 acc=1.0000
epoch 5, train 7/100, loss=0.0160 acc=1.0000
epoch 5, train 8/100, loss=0.0240 acc=1.0000
epoch 5, train 9/100, loss=0.0169 acc=1.0000
epoch 5, train 10/100, loss=0.0104 acc=1.0000
epoch 5, train 11/100, loss=0.0058 acc=1.0000
epoch 5, train 12/100, loss=0.0110 acc=1.0000
epoch 5, train 13/100, loss=0.0565 acc=1.0000
epoch 5, train 14/100, loss=0.0248 acc=1.0000
epoch 5, train 15/100, loss=0.0152 acc=1.0000
epoch 5, train 16/100, loss=0.0183 acc=1.0000
epoch 5, train 17/100, loss=0.0212 acc=1.0000
epoch 5, train 18/100, loss=0.0201 acc=1.0000
epoch 5, train 19/100, loss=0.0438 acc=1.0000
epoch 5, train 20/100, loss=0.0123 acc=1.0000
epoch 5, train 21/100, loss=0.0150 acc=1.0000
epoch 5, train 22/100, loss=0.0106 acc=1.0000
epoch 5, train 23/100, loss=0.0279 acc=1.0000
epoch 5, train 24/100, loss=0.0311 acc=1.0000
epoch 5, train 25/100, loss=0.0096 acc=1.0000
epoch 5, train 26/100, loss=0.0302 acc=1.0000
epoch 5, train 27/100, loss=0.0303 acc=1.0000
epoch 5, train 28/100, loss=0.0170 acc=1.0000
epoch 5, train 29/100, loss=0.0119 acc=1.0000
epoch 5, train 30/100, loss=0.0109 acc=1.0000
epoch 5, train 31/100, loss=0.0178 acc=1.0000
epoch 5, train 32/100, loss=0.0216 acc=1.0000
epoch 5, train 33/100, loss=0.0123 acc=1.0000
epoch 5, train 34/100, loss=0.0114 acc=1.0000
epoch 5, train 35/100, loss=0.0105 acc=1.0000
epoch 5, train 36/100, loss=0.0125 acc=1.0000
epoch 5, train 37/100, loss=0.0163 acc=1.0000
epoch 5, train 38/100, loss=0.0355 acc=1.0000
epoch 5, train 39/100, loss=0.0280 acc=1.0000
epoch 5, train 40/100, loss=0.0128 acc=1.0000
epoch 5, train 41/100, loss=0.0179 acc=1.0000
epoch 5, train 42/100, loss=0.0281 acc=1.0000
epoch 5, train 43/100, loss=0.0225 acc=1.0000
epoch 5, train 44/100, loss=0.0115 acc=1.0000
epoch 5, train 45/100, loss=0.0168 acc=1.0000
epoch 5, train 46/100, loss=0.0129 acc=1.0000
epoch 5, train 47/100, loss=0.0158 acc=1.0000
epoch 5, train 48/100, loss=0.0304 acc=1.0000
epoch 5, train 49/100, loss=0.0205 acc=1.0000
epoch 5, train 50/100, loss=0.0227 acc=1.0000
epoch 5, train 51/100, loss=0.0162 acc=1.0000
epoch 5, train 52/100, loss=0.0359 acc=1.0000
epoch 5, train 53/100, loss=0.0266 acc=0.9867
epoch 5, train 54/100, loss=0.0167 acc=1.0000
epoch 5, train 55/100, loss=0.0206 acc=1.0000
epoch 5, train 56/100, loss=0.0180 acc=1.0000
epoch 5, train 57/100, loss=0.0128 acc=1.0000
epoch 5, train 58/100, loss=0.0246 acc=1.0000
epoch 5, train 59/100, loss=0.0288 acc=1.0000
epoch 5, train 60/100, loss=0.0256 acc=1.0000
epoch 5, train 61/100, loss=0.0232 acc=1.0000
epoch 5, train 62/100, loss=0.0203 acc=1.0000
epoch 5, train 63/100, loss=0.0221 acc=1.0000
epoch 5, train 64/100, loss=0.0165 acc=1.0000
epoch 5, train 65/100, loss=0.0149 acc=1.0000
epoch 5, train 66/100, loss=0.0182 acc=1.0000
epoch 5, train 67/100, loss=0.0138 acc=1.0000
epoch 5, train 68/100, loss=0.0144 acc=1.0000
epoch 5, train 69/100, loss=0.0238 acc=1.0000
epoch 5, train 70/100, loss=0.0234 acc=1.0000
epoch 5, train 71/100, loss=0.0139 acc=1.0000
epoch 5, train 72/100, loss=0.0330 acc=1.0000
epoch 5, train 73/100, loss=0.0073 acc=1.0000
epoch 5, train 74/100, loss=0.0218 acc=1.0000
epoch 5, train 75/100, loss=0.0221 acc=1.0000
epoch 5, train 76/100, loss=0.0164 acc=1.0000
epoch 5, train 77/100, loss=0.0304 acc=1.0000
epoch 5, train 78/100, loss=0.0134 acc=1.0000
epoch 5, train 79/100, loss=0.0312 acc=1.0000
epoch 5, train 80/100, loss=0.0119 acc=1.0000
epoch 5, train 81/100, loss=0.0237 acc=1.0000
epoch 5, train 82/100, loss=0.0202 acc=1.0000
epoch 5, train 83/100, loss=0.0307 acc=1.0000
epoch 5, train 84/100, loss=0.0152 acc=1.0000
epoch 5, train 85/100, loss=0.0078 acc=1.0000
epoch 5, train 86/100, loss=0.0358 acc=1.0000
epoch 5, train 87/100, loss=0.0125 acc=1.0000
epoch 5, train 88/100, loss=0.0063 acc=1.0000
epoch 5, train 89/100, loss=0.0158 acc=1.0000
epoch 5, train 90/100, loss=0.0369 acc=1.0000
epoch 5, train 91/100, loss=0.0204 acc=1.0000
epoch 5, train 92/100, loss=0.0218 acc=1.0000
epoch 5, train 93/100, loss=0.0172 acc=1.0000
epoch 5, train 94/100, loss=0.0157 acc=1.0000
epoch 5, train 95/100, loss=0.0131 acc=1.0000
epoch 5, train 96/100, loss=0.0060 acc=1.0000
epoch 5, train 97/100, loss=0.0145 acc=1.0000
epoch 5, train 98/100, loss=0.0124 acc=1.0000
epoch 5, train 99/100, loss=0.0071 acc=1.0000
epoch 5, train 100/100, loss=0.0220 acc=1.0000
best epoch 4, best val acc=0.9995
epoch 5, val, loss=0.0177 acc=0.9993
ETA:24m/8.0h
epoch 6, train 1/100, loss=0.0150 acc=1.0000
epoch 6, train 2/100, loss=0.0101 acc=1.0000
epoch 6, train 3/100, loss=0.0206 acc=1.0000
epoch 6, train 4/100, loss=0.0216 acc=1.0000
epoch 6, train 5/100, loss=0.0119 acc=1.0000
epoch 6, train 6/100, loss=0.0155 acc=1.0000
epoch 6, train 7/100, loss=0.0297 acc=1.0000
epoch 6, train 8/100, loss=0.0226 acc=1.0000
epoch 6, train 9/100, loss=0.0160 acc=1.0000
epoch 6, train 10/100, loss=0.0145 acc=1.0000
epoch 6, train 11/100, loss=0.0260 acc=1.0000
epoch 6, train 12/100, loss=0.0143 acc=1.0000
epoch 6, train 13/100, loss=0.0162 acc=1.0000
epoch 6, train 14/100, loss=0.0176 acc=1.0000
epoch 6, train 15/100, loss=0.0169 acc=1.0000
epoch 6, train 16/100, loss=0.0152 acc=1.0000
epoch 6, train 17/100, loss=0.0207 acc=1.0000
epoch 6, train 18/100, loss=0.0115 acc=1.0000
epoch 6, train 19/100, loss=0.0152 acc=1.0000
epoch 6, train 20/100, loss=0.0155 acc=1.0000
epoch 6, train 21/100, loss=0.0124 acc=1.0000
epoch 6, train 22/100, loss=0.0168 acc=1.0000
epoch 6, train 23/100, loss=0.0176 acc=1.0000
epoch 6, train 24/100, loss=0.0309 acc=1.0000
epoch 6, train 25/100, loss=0.0100 acc=1.0000
epoch 6, train 26/100, loss=0.0406 acc=0.9867
epoch 6, train 27/100, loss=0.0224 acc=1.0000
epoch 6, train 28/100, loss=0.0053 acc=1.0000
epoch 6, train 29/100, loss=0.0127 acc=1.0000
epoch 6, train 30/100, loss=0.0165 acc=1.0000
epoch 6, train 31/100, loss=0.0227 acc=1.0000
epoch 6, train 32/100, loss=0.0100 acc=1.0000
epoch 6, train 33/100, loss=0.0072 acc=1.0000
epoch 6, train 34/100, loss=0.0151 acc=1.0000
epoch 6, train 35/100, loss=0.0120 acc=1.0000
epoch 6, train 36/100, loss=0.0196 acc=1.0000
epoch 6, train 37/100, loss=0.0125 acc=1.0000
epoch 6, train 38/100, loss=0.0061 acc=1.0000
epoch 6, train 39/100, loss=0.0147 acc=1.0000
epoch 6, train 40/100, loss=0.0134 acc=1.0000
epoch 6, train 41/100, loss=0.0176 acc=1.0000
epoch 6, train 42/100, loss=0.0138 acc=1.0000
epoch 6, train 43/100, loss=0.0078 acc=1.0000
epoch 6, train 44/100, loss=0.0277 acc=1.0000
epoch 6, train 45/100, loss=0.0152 acc=1.0000
epoch 6, train 46/100, loss=0.0076 acc=1.0000
epoch 6, train 47/100, loss=0.0105 acc=1.0000
epoch 6, train 48/100, loss=0.0147 acc=1.0000
epoch 6, train 49/100, loss=0.0441 acc=0.9867
epoch 6, train 50/100, loss=0.0220 acc=1.0000
epoch 6, train 51/100, loss=0.0068 acc=1.0000
epoch 6, train 52/100, loss=0.0121 acc=1.0000
epoch 6, train 53/100, loss=0.0201 acc=1.0000
epoch 6, train 54/100, loss=0.0306 acc=1.0000
epoch 6, train 55/100, loss=0.0417 acc=1.0000
epoch 6, train 56/100, loss=0.0135 acc=1.0000
epoch 6, train 57/100, loss=0.0162 acc=1.0000
epoch 6, train 58/100, loss=0.0160 acc=1.0000
epoch 6, train 59/100, loss=0.0140 acc=1.0000
epoch 6, train 60/100, loss=0.0178 acc=1.0000
epoch 6, train 61/100, loss=0.0157 acc=1.0000
epoch 6, train 62/100, loss=0.0249 acc=1.0000
epoch 6, train 63/100, loss=0.0103 acc=1.0000
epoch 6, train 64/100, loss=0.0204 acc=1.0000
epoch 6, train 65/100, loss=0.0347 acc=1.0000
epoch 6, train 66/100, loss=0.0103 acc=1.0000
epoch 6, train 67/100, loss=0.0107 acc=1.0000
epoch 6, train 68/100, loss=0.0110 acc=1.0000
epoch 6, train 69/100, loss=0.0201 acc=1.0000
epoch 6, train 70/100, loss=0.0162 acc=1.0000
epoch 6, train 71/100, loss=0.0303 acc=1.0000
epoch 6, train 72/100, loss=0.0146 acc=1.0000
epoch 6, train 73/100, loss=0.0176 acc=1.0000
epoch 6, train 74/100, loss=0.0109 acc=1.0000
epoch 6, train 75/100, loss=0.0311 acc=1.0000
epoch 6, train 76/100, loss=0.0127 acc=1.0000
epoch 6, train 77/100, loss=0.0157 acc=1.0000
epoch 6, train 78/100, loss=0.0300 acc=1.0000
epoch 6, train 79/100, loss=0.0229 acc=1.0000
epoch 6, train 80/100, loss=0.0103 acc=1.0000
epoch 6, train 81/100, loss=0.0267 acc=0.9867
epoch 6, train 82/100, loss=0.0128 acc=1.0000
epoch 6, train 83/100, loss=0.0188 acc=1.0000
epoch 6, train 84/100, loss=0.0180 acc=1.0000
epoch 6, train 85/100, loss=0.0096 acc=1.0000
epoch 6, train 86/100, loss=0.0124 acc=1.0000
epoch 6, train 87/100, loss=0.0103 acc=1.0000
epoch 6, train 88/100, loss=0.0205 acc=1.0000
epoch 6, train 89/100, loss=0.0156 acc=1.0000
epoch 6, train 90/100, loss=0.0233 acc=1.0000
epoch 6, train 91/100, loss=0.0107 acc=1.0000
epoch 6, train 92/100, loss=0.0087 acc=1.0000
epoch 6, train 93/100, loss=0.0282 acc=1.0000
epoch 6, train 94/100, loss=0.0252 acc=1.0000
epoch 6, train 95/100, loss=0.0232 acc=1.0000
epoch 6, train 96/100, loss=0.0120 acc=1.0000
epoch 6, train 97/100, loss=0.0137 acc=1.0000
epoch 6, train 98/100, loss=0.0231 acc=1.0000
epoch 6, train 99/100, loss=0.0126 acc=1.0000
epoch 6, train 100/100, loss=0.0198 acc=1.0000
best epoch 4, best val acc=0.9995
epoch 6, val, loss=0.0176 acc=0.9993
ETA:29m/8.0h
epoch 7, train 1/100, loss=0.0134 acc=1.0000
epoch 7, train 2/100, loss=0.0269 acc=1.0000
epoch 7, train 3/100, loss=0.0100 acc=1.0000
epoch 7, train 4/100, loss=0.0184 acc=1.0000
epoch 7, train 5/100, loss=0.0141 acc=1.0000
epoch 7, train 6/100, loss=0.0192 acc=1.0000
epoch 7, train 7/100, loss=0.0175 acc=1.0000
epoch 7, train 8/100, loss=0.0141 acc=1.0000
epoch 7, train 9/100, loss=0.0273 acc=1.0000
epoch 7, train 10/100, loss=0.0105 acc=1.0000
epoch 7, train 11/100, loss=0.0224 acc=1.0000
epoch 7, train 12/100, loss=0.0228 acc=0.9867
epoch 7, train 13/100, loss=0.0207 acc=1.0000
epoch 7, train 14/100, loss=0.0186 acc=1.0000
epoch 7, train 15/100, loss=0.0151 acc=1.0000
epoch 7, train 16/100, loss=0.0155 acc=1.0000
epoch 7, train 17/100, loss=0.0242 acc=1.0000
epoch 7, train 18/100, loss=0.0175 acc=1.0000
epoch 7, train 19/100, loss=0.0220 acc=1.0000
epoch 7, train 20/100, loss=0.0188 acc=1.0000
epoch 7, train 21/100, loss=0.0136 acc=1.0000
epoch 7, train 22/100, loss=0.0194 acc=1.0000
epoch 7, train 23/100, loss=0.0136 acc=1.0000
epoch 7, train 24/100, loss=0.0227 acc=1.0000
epoch 7, train 25/100, loss=0.0090 acc=1.0000
epoch 7, train 26/100, loss=0.0103 acc=1.0000
epoch 7, train 27/100, loss=0.0115 acc=1.0000
epoch 7, train 28/100, loss=0.0201 acc=1.0000
epoch 7, train 29/100, loss=0.0093 acc=1.0000
epoch 7, train 30/100, loss=0.0101 acc=1.0000
epoch 7, train 31/100, loss=0.0095 acc=1.0000
epoch 7, train 32/100, loss=0.0103 acc=1.0000
epoch 7, train 33/100, loss=0.0159 acc=1.0000
epoch 7, train 34/100, loss=0.0187 acc=1.0000
epoch 7, train 35/100, loss=0.0288 acc=1.0000
epoch 7, train 36/100, loss=0.0230 acc=1.0000
epoch 7, train 37/100, loss=0.0151 acc=1.0000
epoch 7, train 38/100, loss=0.0166 acc=1.0000
epoch 7, train 39/100, loss=0.0205 acc=1.0000
epoch 7, train 40/100, loss=0.0091 acc=1.0000
epoch 7, train 41/100, loss=0.0195 acc=1.0000
epoch 7, train 42/100, loss=0.0223 acc=1.0000
epoch 7, train 43/100, loss=0.0091 acc=1.0000
epoch 7, train 44/100, loss=0.0154 acc=1.0000
epoch 7, train 45/100, loss=0.0189 acc=1.0000
epoch 7, train 46/100, loss=0.0338 acc=1.0000
epoch 7, train 47/100, loss=0.0108 acc=1.0000
epoch 7, train 48/100, loss=0.0255 acc=1.0000
epoch 7, train 49/100, loss=0.0333 acc=1.0000
epoch 7, train 50/100, loss=0.0182 acc=1.0000
epoch 7, train 51/100, loss=0.0281 acc=1.0000
epoch 7, train 52/100, loss=0.0205 acc=1.0000
epoch 7, train 53/100, loss=0.0229 acc=1.0000
epoch 7, train 54/100, loss=0.0122 acc=1.0000
epoch 7, train 55/100, loss=0.0143 acc=1.0000
epoch 7, train 56/100, loss=0.0103 acc=1.0000
epoch 7, train 57/100, loss=0.0164 acc=1.0000
epoch 7, train 58/100, loss=0.0101 acc=1.0000
epoch 7, train 59/100, loss=0.0118 acc=1.0000
epoch 7, train 60/100, loss=0.0094 acc=1.0000
epoch 7, train 61/100, loss=0.0095 acc=1.0000
epoch 7, train 62/100, loss=0.0123 acc=1.0000
epoch 7, train 63/100, loss=0.0197 acc=1.0000
epoch 7, train 64/100, loss=0.0197 acc=1.0000
epoch 7, train 65/100, loss=0.0101 acc=1.0000
epoch 7, train 66/100, loss=0.0198 acc=1.0000
epoch 7, train 67/100, loss=0.0283 acc=1.0000
epoch 7, train 68/100, loss=0.0108 acc=1.0000
epoch 7, train 69/100, loss=0.0159 acc=1.0000
epoch 7, train 70/100, loss=0.0130 acc=1.0000
epoch 7, train 71/100, loss=0.0091 acc=1.0000
epoch 7, train 72/100, loss=0.0164 acc=1.0000
epoch 7, train 73/100, loss=0.0107 acc=1.0000
epoch 7, train 74/100, loss=0.0270 acc=0.9867
epoch 7, train 75/100, loss=0.0120 acc=1.0000
epoch 7, train 76/100, loss=0.0147 acc=1.0000
epoch 7, train 77/100, loss=0.0236 acc=1.0000
epoch 7, train 78/100, loss=0.0134 acc=1.0000
epoch 7, train 79/100, loss=0.0125 acc=1.0000
epoch 7, train 80/100, loss=0.0079 acc=1.0000
epoch 7, train 81/100, loss=0.0131 acc=1.0000
epoch 7, train 82/100, loss=0.0141 acc=1.0000
epoch 7, train 83/100, loss=0.0096 acc=1.0000
epoch 7, train 84/100, loss=0.0077 acc=1.0000
epoch 7, train 85/100, loss=0.0186 acc=1.0000
epoch 7, train 86/100, loss=0.0081 acc=1.0000
epoch 7, train 87/100, loss=0.0110 acc=1.0000
epoch 7, train 88/100, loss=0.0168 acc=1.0000
epoch 7, train 89/100, loss=0.0282 acc=1.0000
epoch 7, train 90/100, loss=0.0132 acc=1.0000
epoch 7, train 91/100, loss=0.0204 acc=1.0000
epoch 7, train 92/100, loss=0.0107 acc=1.0000
epoch 7, train 93/100, loss=0.0258 acc=1.0000
epoch 7, train 94/100, loss=0.0074 acc=1.0000
epoch 7, train 95/100, loss=0.0224 acc=1.0000
epoch 7, train 96/100, loss=0.0245 acc=1.0000
epoch 7, train 97/100, loss=0.0258 acc=1.0000
epoch 7, train 98/100, loss=0.0194 acc=1.0000
epoch 7, train 99/100, loss=0.0082 acc=1.0000
epoch 7, train 100/100, loss=0.0167 acc=1.0000
best epoch 4, best val acc=0.9995
epoch 7, val, loss=0.0149 acc=0.9995
ETA:34m/8.0h
epoch 8, train 1/100, loss=0.0152 acc=1.0000
epoch 8, train 2/100, loss=0.0056 acc=1.0000
epoch 8, train 3/100, loss=0.0155 acc=1.0000
epoch 8, train 4/100, loss=0.0114 acc=1.0000
epoch 8, train 5/100, loss=0.0268 acc=1.0000
epoch 8, train 6/100, loss=0.0135 acc=1.0000
epoch 8, train 7/100, loss=0.0074 acc=1.0000
epoch 8, train 8/100, loss=0.0157 acc=1.0000
epoch 8, train 9/100, loss=0.0163 acc=1.0000
epoch 8, train 10/100, loss=0.0158 acc=1.0000
epoch 8, train 11/100, loss=0.0091 acc=1.0000
epoch 8, train 12/100, loss=0.0062 acc=1.0000
epoch 8, train 13/100, loss=0.0082 acc=1.0000
epoch 8, train 14/100, loss=0.0165 acc=1.0000
epoch 8, train 15/100, loss=0.0163 acc=1.0000
epoch 8, train 16/100, loss=0.0111 acc=1.0000
epoch 8, train 17/100, loss=0.0102 acc=1.0000
epoch 8, train 18/100, loss=0.0267 acc=1.0000
epoch 8, train 19/100, loss=0.0231 acc=1.0000
epoch 8, train 20/100, loss=0.0160 acc=1.0000
epoch 8, train 21/100, loss=0.0110 acc=1.0000
epoch 8, train 22/100, loss=0.0099 acc=1.0000
epoch 8, train 23/100, loss=0.0128 acc=1.0000
epoch 8, train 24/100, loss=0.0130 acc=1.0000
epoch 8, train 25/100, loss=0.0112 acc=1.0000
epoch 8, train 26/100, loss=0.0120 acc=1.0000
epoch 8, train 27/100, loss=0.0070 acc=1.0000
epoch 8, train 28/100, loss=0.0133 acc=1.0000
epoch 8, train 29/100, loss=0.0117 acc=1.0000
epoch 8, train 30/100, loss=0.0102 acc=1.0000
epoch 8, train 31/100, loss=0.0215 acc=1.0000
epoch 8, train 32/100, loss=0.0166 acc=1.0000
epoch 8, train 33/100, loss=0.0224 acc=1.0000
epoch 8, train 34/100, loss=0.0135 acc=1.0000
epoch 8, train 35/100, loss=0.0303 acc=1.0000
epoch 8, train 36/100, loss=0.0284 acc=1.0000
epoch 8, train 37/100, loss=0.0087 acc=1.0000
epoch 8, train 38/100, loss=0.0125 acc=1.0000
epoch 8, train 39/100, loss=0.0113 acc=1.0000
epoch 8, train 40/100, loss=0.0113 acc=1.0000
epoch 8, train 41/100, loss=0.0089 acc=1.0000
epoch 8, train 42/100, loss=0.0306 acc=0.9867
epoch 8, train 43/100, loss=0.0119 acc=1.0000
epoch 8, train 44/100, loss=0.0193 acc=1.0000
epoch 8, train 45/100, loss=0.0164 acc=1.0000
epoch 8, train 46/100, loss=0.0092 acc=1.0000
epoch 8, train 47/100, loss=0.0113 acc=1.0000
epoch 8, train 48/100, loss=0.0082 acc=1.0000
epoch 8, train 49/100, loss=0.0065 acc=1.0000
epoch 8, train 50/100, loss=0.0107 acc=1.0000
epoch 8, train 51/100, loss=0.0203 acc=1.0000
epoch 8, train 52/100, loss=0.0103 acc=1.0000
epoch 8, train 53/100, loss=0.0116 acc=1.0000
epoch 8, train 54/100, loss=0.0170 acc=1.0000
epoch 8, train 55/100, loss=0.0500 acc=0.9867
epoch 8, train 56/100, loss=0.0144 acc=1.0000
epoch 8, train 57/100, loss=0.0102 acc=1.0000
epoch 8, train 58/100, loss=0.0074 acc=1.0000
epoch 8, train 59/100, loss=0.0218 acc=1.0000
epoch 8, train 60/100, loss=0.0101 acc=1.0000
epoch 8, train 61/100, loss=0.0070 acc=1.0000
epoch 8, train 62/100, loss=0.0182 acc=1.0000
epoch 8, train 63/100, loss=0.0099 acc=1.0000
epoch 8, train 64/100, loss=0.0166 acc=1.0000
epoch 8, train 65/100, loss=0.0357 acc=0.9867
epoch 8, train 66/100, loss=0.0181 acc=1.0000
epoch 8, train 67/100, loss=0.0086 acc=1.0000
epoch 8, train 68/100, loss=0.0161 acc=1.0000
epoch 8, train 69/100, loss=0.0156 acc=1.0000
epoch 8, train 70/100, loss=0.0094 acc=1.0000
epoch 8, train 71/100, loss=0.0182 acc=1.0000
epoch 8, train 72/100, loss=0.0110 acc=1.0000
epoch 8, train 73/100, loss=0.0158 acc=1.0000
epoch 8, train 74/100, loss=0.0134 acc=1.0000
epoch 8, train 75/100, loss=0.0100 acc=1.0000
epoch 8, train 76/100, loss=0.0114 acc=1.0000
epoch 8, train 77/100, loss=0.0060 acc=1.0000
epoch 8, train 78/100, loss=0.0052 acc=1.0000
epoch 8, train 79/100, loss=0.0107 acc=1.0000
epoch 8, train 80/100, loss=0.0154 acc=1.0000
epoch 8, train 81/100, loss=0.0056 acc=1.0000
epoch 8, train 82/100, loss=0.0143 acc=1.0000
epoch 8, train 83/100, loss=0.0093 acc=1.0000
epoch 8, train 84/100, loss=0.0146 acc=1.0000
epoch 8, train 85/100, loss=0.0205 acc=1.0000
epoch 8, train 86/100, loss=0.0093 acc=1.0000
epoch 8, train 87/100, loss=0.0145 acc=1.0000
epoch 8, train 88/100, loss=0.0195 acc=1.0000
epoch 8, train 89/100, loss=0.0067 acc=1.0000
epoch 8, train 90/100, loss=0.0098 acc=1.0000
epoch 8, train 91/100, loss=0.0124 acc=1.0000
epoch 8, train 92/100, loss=0.0147 acc=1.0000
epoch 8, train 93/100, loss=0.0251 acc=1.0000
epoch 8, train 94/100, loss=0.0072 acc=1.0000
epoch 8, train 95/100, loss=0.0207 acc=1.0000
epoch 8, train 96/100, loss=0.0117 acc=1.0000
epoch 8, train 97/100, loss=0.0114 acc=1.0000
epoch 8, train 98/100, loss=0.0203 acc=1.0000
epoch 8, train 99/100, loss=0.0075 acc=1.0000
epoch 8, train 100/100, loss=0.0134 acc=1.0000
best epoch 4, best val acc=0.9995
epoch 8, val, loss=0.0153 acc=0.9996
ETA:38m/8.0h
epoch 9, train 1/100, loss=0.0115 acc=1.0000
epoch 9, train 2/100, loss=0.0186 acc=1.0000
epoch 9, train 3/100, loss=0.0378 acc=0.9867
epoch 9, train 4/100, loss=0.0176 acc=1.0000
epoch 9, train 5/100, loss=0.0053 acc=1.0000
epoch 9, train 6/100, loss=0.0108 acc=1.0000
epoch 9, train 7/100, loss=0.0077 acc=1.0000
epoch 9, train 8/100, loss=0.0174 acc=1.0000
epoch 9, train 9/100, loss=0.0200 acc=1.0000
epoch 9, train 10/100, loss=0.0192 acc=1.0000
epoch 9, train 11/100, loss=0.0298 acc=1.0000
epoch 9, train 12/100, loss=0.0344 acc=1.0000
epoch 9, train 13/100, loss=0.0108 acc=1.0000
epoch 9, train 14/100, loss=0.0238 acc=1.0000
epoch 9, train 15/100, loss=0.0162 acc=1.0000
epoch 9, train 16/100, loss=0.0132 acc=1.0000
epoch 9, train 17/100, loss=0.0379 acc=1.0000
epoch 9, train 18/100, loss=0.0146 acc=1.0000
epoch 9, train 19/100, loss=0.0124 acc=1.0000
epoch 9, train 20/100, loss=0.0067 acc=1.0000
epoch 9, train 21/100, loss=0.0056 acc=1.0000
epoch 9, train 22/100, loss=0.0125 acc=1.0000
epoch 9, train 23/100, loss=0.0096 acc=1.0000
epoch 9, train 24/100, loss=0.0278 acc=1.0000
epoch 9, train 25/100, loss=0.0147 acc=1.0000
epoch 9, train 26/100, loss=0.0274 acc=1.0000
epoch 9, train 27/100, loss=0.0281 acc=1.0000
epoch 9, train 28/100, loss=0.0220 acc=0.9867
epoch 9, train 29/100, loss=0.0173 acc=1.0000
epoch 9, train 30/100, loss=0.0060 acc=1.0000
epoch 9, train 31/100, loss=0.0123 acc=1.0000
epoch 9, train 32/100, loss=0.0106 acc=1.0000
epoch 9, train 33/100, loss=0.0132 acc=1.0000
epoch 9, train 34/100, loss=0.0281 acc=1.0000
epoch 9, train 35/100, loss=0.0418 acc=0.9867
epoch 9, train 36/100, loss=0.0061 acc=1.0000
epoch 9, train 37/100, loss=0.0079 acc=1.0000
epoch 9, train 38/100, loss=0.0123 acc=1.0000
epoch 9, train 39/100, loss=0.0157 acc=1.0000
epoch 9, train 40/100, loss=0.0205 acc=1.0000
epoch 9, train 41/100, loss=0.0143 acc=1.0000
epoch 9, train 42/100, loss=0.0167 acc=1.0000
epoch 9, train 43/100, loss=0.0104 acc=1.0000
epoch 9, train 44/100, loss=0.0126 acc=1.0000
epoch 9, train 45/100, loss=0.0101 acc=1.0000
epoch 9, train 46/100, loss=0.0112 acc=1.0000
epoch 9, train 47/100, loss=0.0115 acc=1.0000
epoch 9, train 48/100, loss=0.0130 acc=1.0000
epoch 9, train 49/100, loss=0.0446 acc=1.0000
epoch 9, train 50/100, loss=0.0169 acc=1.0000
epoch 9, train 51/100, loss=0.0130 acc=1.0000
epoch 9, train 52/100, loss=0.0165 acc=1.0000
epoch 9, train 53/100, loss=0.0134 acc=1.0000
epoch 9, train 54/100, loss=0.0085 acc=1.0000
epoch 9, train 55/100, loss=0.0106 acc=1.0000
epoch 9, train 56/100, loss=0.0063 acc=1.0000
epoch 9, train 57/100, loss=0.0205 acc=1.0000
epoch 9, train 58/100, loss=0.0197 acc=1.0000
epoch 9, train 59/100, loss=0.0175 acc=1.0000
epoch 9, train 60/100, loss=0.0069 acc=1.0000
epoch 9, train 61/100, loss=0.0120 acc=1.0000
epoch 9, train 62/100, loss=0.0070 acc=1.0000
epoch 9, train 63/100, loss=0.0082 acc=1.0000
epoch 9, train 64/100, loss=0.0100 acc=1.0000
epoch 9, train 65/100, loss=0.0217 acc=1.0000
epoch 9, train 66/100, loss=0.0118 acc=1.0000
epoch 9, train 67/100, loss=0.0062 acc=1.0000
epoch 9, train 68/100, loss=0.0339 acc=0.9867
epoch 9, train 69/100, loss=0.0144 acc=1.0000
epoch 9, train 70/100, loss=0.0136 acc=1.0000
epoch 9, train 71/100, loss=0.0078 acc=1.0000
epoch 9, train 72/100, loss=0.0161 acc=1.0000
epoch 9, train 73/100, loss=0.0117 acc=1.0000
epoch 9, train 74/100, loss=0.0318 acc=1.0000
epoch 9, train 75/100, loss=0.0129 acc=1.0000
epoch 9, train 76/100, loss=0.0089 acc=1.0000
epoch 9, train 77/100, loss=0.0078 acc=1.0000
epoch 9, train 78/100, loss=0.0140 acc=1.0000
epoch 9, train 79/100, loss=0.0063 acc=1.0000
epoch 9, train 80/100, loss=0.0200 acc=1.0000
epoch 9, train 81/100, loss=0.0134 acc=1.0000
epoch 9, train 82/100, loss=0.0246 acc=1.0000
epoch 9, train 83/100, loss=0.0065 acc=1.0000
epoch 9, train 84/100, loss=0.0150 acc=1.0000
epoch 9, train 85/100, loss=0.0119 acc=1.0000
epoch 9, train 86/100, loss=0.0143 acc=1.0000
epoch 9, train 87/100, loss=0.0117 acc=1.0000
epoch 9, train 88/100, loss=0.0259 acc=1.0000
epoch 9, train 89/100, loss=0.0129 acc=1.0000
epoch 9, train 90/100, loss=0.0221 acc=1.0000
epoch 9, train 91/100, loss=0.0137 acc=1.0000
epoch 9, train 92/100, loss=0.0059 acc=1.0000
epoch 9, train 93/100, loss=0.0145 acc=1.0000
epoch 9, train 94/100, loss=0.0113 acc=1.0000
epoch 9, train 95/100, loss=0.0143 acc=1.0000
epoch 9, train 96/100, loss=0.0159 acc=1.0000
epoch 9, train 97/100, loss=0.0136 acc=1.0000
epoch 9, train 98/100, loss=0.0101 acc=1.0000
epoch 9, train 99/100, loss=0.0133 acc=1.0000
epoch 9, train 100/100, loss=0.0160 acc=1.0000
best epoch 8, best val acc=0.9996
epoch 9, val, loss=0.0152 acc=0.9994
ETA:43m/8.0h
epoch 10, train 1/100, loss=0.0196 acc=1.0000
epoch 10, train 2/100, loss=0.0198 acc=1.0000
epoch 10, train 3/100, loss=0.0069 acc=1.0000
epoch 10, train 4/100, loss=0.0099 acc=1.0000
epoch 10, train 5/100, loss=0.0139 acc=1.0000
epoch 10, train 6/100, loss=0.0079 acc=1.0000
epoch 10, train 7/100, loss=0.0328 acc=1.0000
epoch 10, train 8/100, loss=0.0118 acc=1.0000
epoch 10, train 9/100, loss=0.0181 acc=1.0000
epoch 10, train 10/100, loss=0.0107 acc=1.0000
epoch 10, train 11/100, loss=0.0178 acc=1.0000
epoch 10, train 12/100, loss=0.0064 acc=1.0000
epoch 10, train 13/100, loss=0.0096 acc=1.0000
epoch 10, train 14/100, loss=0.0038 acc=1.0000
epoch 10, train 15/100, loss=0.0241 acc=1.0000
epoch 10, train 16/100, loss=0.0087 acc=1.0000
epoch 10, train 17/100, loss=0.0284 acc=1.0000
epoch 10, train 18/100, loss=0.0213 acc=1.0000
epoch 10, train 19/100, loss=0.0169 acc=1.0000
epoch 10, train 20/100, loss=0.0186 acc=1.0000
epoch 10, train 21/100, loss=0.0187 acc=1.0000
epoch 10, train 22/100, loss=0.0077 acc=1.0000
epoch 10, train 23/100, loss=0.0113 acc=1.0000
epoch 10, train 24/100, loss=0.0305 acc=1.0000
epoch 10, train 25/100, loss=0.0041 acc=1.0000
epoch 10, train 26/100, loss=0.0100 acc=1.0000
epoch 10, train 27/100, loss=0.0101 acc=1.0000
epoch 10, train 28/100, loss=0.0120 acc=1.0000
epoch 10, train 29/100, loss=0.0368 acc=0.9867
epoch 10, train 30/100, loss=0.0123 acc=1.0000
epoch 10, train 31/100, loss=0.0100 acc=1.0000
epoch 10, train 32/100, loss=0.0222 acc=1.0000
epoch 10, train 33/100, loss=0.0255 acc=1.0000
epoch 10, train 34/100, loss=0.0293 acc=1.0000
epoch 10, train 35/100, loss=0.0156 acc=1.0000
epoch 10, train 36/100, loss=0.0124 acc=1.0000
epoch 10, train 37/100, loss=0.0188 acc=1.0000
epoch 10, train 38/100, loss=0.0047 acc=1.0000
epoch 10, train 39/100, loss=0.0205 acc=1.0000
epoch 10, train 40/100, loss=0.0157 acc=1.0000
epoch 10, train 41/100, loss=0.0101 acc=1.0000
epoch 10, train 42/100, loss=0.0206 acc=1.0000
epoch 10, train 43/100, loss=0.0095 acc=1.0000
epoch 10, train 44/100, loss=0.0106 acc=1.0000
epoch 10, train 45/100, loss=0.0063 acc=1.0000
epoch 10, train 46/100, loss=0.0096 acc=1.0000
epoch 10, train 47/100, loss=0.0118 acc=1.0000
epoch 10, train 48/100, loss=0.0251 acc=1.0000
epoch 10, train 49/100, loss=0.0138 acc=1.0000
epoch 10, train 50/100, loss=0.0217 acc=1.0000
epoch 10, train 51/100, loss=0.0098 acc=1.0000
epoch 10, train 52/100, loss=0.0319 acc=0.9867
epoch 10, train 53/100, loss=0.0168 acc=1.0000
epoch 10, train 54/100, loss=0.0112 acc=1.0000
epoch 10, train 55/100, loss=0.0114 acc=1.0000