Menoh is DNN inference library with C API.
Menoh is released under MIT License.
This codebase contains C API and C++ API.
See also
-
Chainer model to ONNX : onnx-chainer
-
C# wrapper : menoh-sharp
-
Haskell wrapper : menoh-haskell
- DNN Inference with CPU
- ONNX support
- Easy to use.
- MKL-DNN Library (0.14 or later)
- ProtocolBuffers (3.5.1 is checked)
Execute below commands in root directory.
python retrieve_data.py
mkdir build && cd build
cmake ..
make
Execute below command in build directory created at Build section.
make install
Execute below command in root directory.
./example/vgg16_example_in_cpp
Result is below
vgg16 example
-22.3708 -34.4082 -10.218 24.2962 -0.252342 -8.004 -27.0804 -23.0728 -7.05607 16.1343
top 5 categories are
8 0.96132 n01514859 hen
7 0.0369939 n01514668 cock
86 0.00122795 n01807496 partridge
82 0.000225824 n01797886 ruffed grouse, partridge, Bonasa umbellus
97 3.83677e-05 n01847000 drake
Please give --help
option for details
./example/vgg16_example --help
Setup chainer
Then, execute below commands in root directory.
python gen_test_data.py
cd build
cmake -DENABLE_TEST=ON ..
make
./test/menoh_test.out
- Elu
- LeakyRelu
- Relu
- Softmax
- Tanh
- Concat
- Conv
- ConvTranspose
- FC
- Abs
- Add
- Sqrt
- BatchNormalization
- AveragePool
- GlobalAveragePool
- GlobalMaxPool
- MaxPool
Menoh is released under MIT License. Please see the LICENSE file for details.
Note: retrieve_data.py
downloads data/VGG16.onnx
. data/VGG16.onnx
is generated by onnx-chainer from pre-trained model which is uploaded
at http://www.robots.ox.ac.uk/%7Evgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
That pre-trained model is released under Creative Commons Attribution License.