-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
209 lines (165 loc) · 8.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import pandas as pd
import numpy as np
import time
import pickle
import utils
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_log_error
from sklearn.preprocessing import LabelEncoder
from deepctr.models import xDeepFM, DeepFM
from deepctr.feature_column import SparseFeat, DenseFeat, get_feature_names
def train_lrrf(X_train_lr, y_train):
""" Train and store LRRF (LR + Random Forest) """
y_train_logscale = np.log(y_train + 1.)
reg = LinearRegression(fit_intercept=False).fit(np.log(X_train_lr.values+1), y_train_logscale)
filename = './model/lr.sav'
pickle.dump(reg, open(filename, 'wb'))
# predict
lr_y_train_predict = reg.predict(np.log(X_train_lr.values + 1))
lr_yhat = utils.get_normal_counter(lr_y_train_predict, logarithm="e")
print(mean_squared_log_error(lr_yhat, y_train))
# for training residual RF
rf_y_train = y_train_logscale - lr_y_train_predict
reg = RandomForestRegressor(max_depth=20,
n_estimators=500,
random_state=7,
n_jobs=3,
verbose=5)
start_time = time.time()
reg.fit(X_train[features].values, rf_y_train, )
elapsed_time = time.time() - start_time
print("took {} seconds for fitting".format(elapsed_time))
# save randomforest regressor
filename = './model/randomforest_regressor_500e_lrallfeatures_rs7.sav'
pickle.dump(reg, open(filename, 'wb'))
def train_nnrf(X_train_lr, y_train):
""" Train and store NNRF (Neural Networks - MLP + Random Forest) """
regr = MLPRegressor(random_state=7,
hidden_layer_sizes=(64, 32, 16, 8, 8),
batch_size=1024,
learning_rate_init=.01,
early_stopping=False,
verbose=True,
shuffle=True,
n_iter_no_change=10)
y_train_logscale = np.log(y_train + 1.)
# fit
start_time = time.time()
regr.fit(np.log(X_train_lr.values + 1), y_train_logscale)
elapsed_time = time.time() - start_time
print("took {} seconds for fitting".format(elapsed_time))
filename = './model/nnnoval_shuffle.sav'
pickle.dump(regr, open(filename, 'wb'))
lr_y_train_predict = regr.predict(np.log(X_train_lr.values + 1))
# for training residual RF
rf_y_train = y_train_logscale - lr_y_train_predict
reg = RandomForestRegressor(max_depth=18,
n_estimators=500,
random_state=77,
n_jobs=3,
verbose=5)
start_time = time.time()
reg.fit(X_train[features].values, rf_y_train, )
elapsed_time = time.time() - start_time
print("took {} seconds for fitting".format(elapsed_time))
# save randomforest regressor
filename = './model/randomforest_regressor_1000e_nnallfeatures_rs7.sav'
pickle.dump(reg, open(filename, 'wb'))
def train_xdeepfmrf(X_train, y_train):
""" Train and store FMRF (xDeepFM + Random Forest) """
X_train[[c for c in features if c not in ["timeseg", "day_of_week"]]] = np.log1p(
X_train[[c for c in features if c not in ["timeseg", "day_of_week"]]])
features_ = [f.replace("#", "") for f in features]
X_train.columns = [f.replace("#", "") for f in X_train.columns]
sparse_features = ["timeseg", "day_of_week"]
dense_features = [f for f in features_ if f not in ["timeseg", "day_of_week"]]
def encoding(data, feat, encoder):
data[feat] = encoder.fit_transform(data[feat])
[encoding(X_train, feat, LabelEncoder()) for feat in sparse_features]
sparse_feature_columns = [SparseFeat(feat, vocabulary_size=X_train[feat].nunique(), embedding_dim=4) \
for i, feat in enumerate(sparse_features)]
dense_feature_columns = [DenseFeat(feat, 1) for feat in dense_features]
# features to be used for dnn part of xdeepfm
dnn_feature_columns = sparse_feature_columns + dense_feature_columns
# features to be used for linear part of xdeepfm
linear_feature_columns = sparse_feature_columns + dense_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)
train_model_input = {name: X_train[name].values for name in feature_names}
model = xDeepFM(linear_feature_columns, dnn_feature_columns, task='regression', seed=28)
# compiling the model
model.compile("adam", "mse", metrics=['mse'], )
# training the model
y_train_logscale = np.log(y_train + 1.)
history = model.fit(train_model_input, y_train_logscale, batch_size=256, epochs=200, verbose=2)
model.save_weights('./model/xDeepFM_w.h5')
pred = model.predict(train_model_input, batch_size=256)
rf_y_train = y_train_logscale - pred.reshape(6167810, )
reg = RandomForestRegressor(max_depth=16,
max_features=.5,
n_estimators=500,
random_state=28,
n_jobs=3,
verbose=5)
start_time = time.time()
reg.fit(X_train[features].values, rf_y_train, )
elapsed_time = time.time() - start_time
print("took {} seconds for fitting".format(elapsed_time))
filename = './model/randomforest_regressor_500e_xdeepfm_rs211_28.sav'
pickle.dump(reg, open(filename, 'wb'))
def train_deepfmrf(X_train, y_train):
""" Train and store FMRF (DeepFM + Random Forest) """
X_train[[c for c in features if c not in ["timeseg", "day_of_week"]]] = np.log1p(
X_train[[c for c in features if c not in ["timeseg", "day_of_week"]]])
features_ = [f.replace("#", "") for f in features]
X_train.columns = [f.replace("#", "") for f in X_train.columns]
sparse_features = ["timeseg", "day_of_week"]
dense_features = [f for f in features_ if f not in ["timeseg", "day_of_week"]]
def encoding(data, feat, encoder):
data[feat] = encoder.fit_transform(data[feat])
[encoding(X_train, feat, LabelEncoder()) for feat in sparse_features]
sparse_feature_columns = [SparseFeat(feat, vocabulary_size=X_train[feat].nunique(), embedding_dim=4) \
for i, feat in enumerate(sparse_features)]
dense_feature_columns = [DenseFeat(feat, 1) for feat in dense_features]
# features to be used for dnn part of xdeepfm
dnn_feature_columns = dense_feature_columns
# features to be used for linear part of xdeepfm
linear_feature_columns = dense_feature_columns
feature_names = get_feature_names(linear_feature_columns + dnn_feature_columns)
train_model_input = {name: X_train[name].values for name in feature_names}
model = DeepFM(linear_feature_columns, dnn_feature_columns, task='regression', seed=29)
# compiling the model
model.compile("adam", "mse", metrics=['mse'], )
# training the model
y_train_logscale = np.log(y_train + 1.)
history = model.fit(train_model_input, y_train_logscale, batch_size=4096, epochs=150, verbose=2)
model.save_weights('./model/xDeepFM_w_seed29.h5')
pred = model.predict(train_model_input, batch_size=4096)
rf_y_train = y_train_logscale - pred.reshape(6167810, )
reg = RandomForestRegressor(max_depth=16,
max_features=.5,
n_estimators=500,
random_state=29,
n_jobs=3,
verbose=5)
start_time = time.time()
reg.fit(X_train[features].values, rf_y_train, )
elapsed_time = time.time() - start_time
print("took {} seconds for fitting".format(elapsed_time))
filename = './model/randomforest_regressor_500e_xdeepfm_rs211_29.sav'
pickle.dump(reg, open(filename, 'wb'))
if __name__ == "__main__":
features = utils.features
X_train, y_train = utils.load_train_data()
# filtering
merged_tcounts = utils.get_merged_tcounts()
usernames = merged_tcounts[merged_tcounts["tcounts_x"] >= 10]["username"].values
X_train = X_train[~X_train["username"].isin(usernames)]
y_train = y_train[X_train.index]
X_train_lr = pd.get_dummies(X_train[features], columns=["timeseg", "day_of_week"])
print("training data shape", X_train.shape)
train_lrrf(X_train_lr, y_train)
train_nnrf(X_train_lr, y_train)
train_xdeepfmrf(X_train, y_train)
train_deepfmrf(X_train, y_train)