Skip to content

BUG: datetime64 column has incorrect unit when created with pd.Timestamp  #60773

Closed
@bmwilly

Description

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

ts_list = ["2021-01-01 00:00:00", "2021-01-01 00:00:01", "2021-01-01 00:00:02"]
df = pd.DataFrame(
    {
        "ts1": [pd.Timestamp(ts) for ts in ts_list],
        "ts2": pd.to_datetime(ts_list),
    }
).assign(
    ts3=pd.Timestamp(ts_list[0]),
    ts4=pd.Timestamp(ts_list[0], unit="ns"),
    ts5=pd.to_datetime(ts_list[0]),
)

Issue Description

Then

df.dtypes

gives

ts1    datetime64[ns]
ts2    datetime64[ns]
ts3     datetime64[s]
ts4     datetime64[s]
ts5    datetime64[ns]
dtype: object

Expected Behavior

I would expect the above to output

ts1    datetime64[ns]
ts2    datetime64[ns]
ts3     datetime64[ns]
ts4     datetime64[ns]
ts5    datetime64[ns]
dtype: object

Installed Versions

INSTALLED VERSIONS
------------------
commit                : 0691c5cf90477d3503834d983f69350f250a6ff7
python                : 3.11.10
python-bits           : 64
OS                    : Darwin
OS-release            : 24.2.0
Version               : Darwin Kernel Version 24.2.0: Fri Dec  6 19:02:41 PST 2024; root:xnu-11215.61.5~2/RELEASE_ARM64_T6030
machine               : arm64
processor             : arm
byteorder             : little
LC_ALL                : en_US.UTF-8
LANG                  : en_US.UTF-8
LOCALE                : en_US.UTF-8

pandas                : 2.2.3
numpy                 : 1.24.4
pytz                  : 2024.2
dateutil              : 2.9.0.post0
pip                   : 24.2
Cython                : 3.0.11
sphinx                : None
IPython               : 8.31.0
adbc-driver-postgresql: None
adbc-driver-sqlite    : None
bs4                   : 4.12.3
blosc                 : None
bottleneck            : 1.3.7
dataframe-api-compat  : None
fastparquet           : None
fsspec                : 2023.12.2
html5lib              : 1.1
hypothesis            : 6.123.17
gcsfs                 : None
jinja2                : 3.1.5
lxml.etree            : 5.3.0
matplotlib            : 3.8.4
numba                 : 0.60.0
numexpr               : 2.10.2
odfpy                 : None
openpyxl              : 3.1.5
pandas_gbq            : None
psycopg2              : 2.9.10
pymysql               : None
pyarrow               : 16.1.0
pyreadstat            : None
pytest                : 7.4.4
python-calamine       : None
pyxlsb                : None
s3fs                  : 2023.12.2
scipy                 : 1.13.0
sqlalchemy            : 2.0.36
tables                : 3.9.2
tabulate              : 0.9.0
xarray                : 2025.1.1
xlrd                  : 2.0.1
xlsxwriter            : 3.2.0
zstandard             : 0.23.0
tzdata                : 2024.2
qtpy                  : None
pyqt5                 : None

Metadata

Assignees

No one assigned

    Labels

    BugNeeds TriageIssue that has not been reviewed by a pandas team member

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions