Skip to content

Commit

Permalink
Create nerf-dy.txt
Browse files Browse the repository at this point in the history
  • Loading branch information
lhy0807 authored Jun 7, 2022
1 parent f3ad074 commit 70582ec
Showing 1 changed file with 15 additions and 0 deletions.
15 changes: 15 additions & 0 deletions citations/nerf-dy.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
@InProceedings{pmlr-v164-li22a,
title = {3D Neural Scene Representations for Visuomotor Control},
author = {Li, Yunzhu and Li, Shuang and Sitzmann, Vincent and Agrawal, Pulkit and Torralba, Antonio},
booktitle = {Proceedings of the 5th Conference on Robot Learning},
pages = {112--123},
year = {2022},
editor = {Faust, Aleksandra and Hsu, David and Neumann, Gerhard},
volume = {164},
series = {Proceedings of Machine Learning Research},
month = {08--11 Nov},
publisher = {PMLR},
pdf = {https://proceedings.mlr.press/v164/li22a/li22a.pdf},
url = {https://proceedings.mlr.press/v164/li22a.html},
abstract = {Humans have a strong intuitive understanding of the 3D environment around us. The mental model of the physics in our brain applies to objects of different materials and enables us to perform a wide range of manipulation tasks that are far beyond the reach of current robots. In this work, we desire to learn models for dynamic 3D scenes purely from 2D visual observations. Our model combines Neural Radiance Fields (NeRF) and time contrastive learning with an autoencoding framework, which learns viewpoint-invariant 3D-aware scene representations. We show that a dynamics model, constructed over the learned representation space, enables visuomotor control for challenging manipulation tasks involving both rigid bodies and fluids, where the target is specified in a viewpoint different from what the robot operates on. When coupled with an auto-decoding framework, it can even support goal specification from camera viewpoints that are outside the training distribution. We further demonstrate the richness of the learned 3D dynamics model by performing future prediction and novel view synthesis. Finally, we provide detailed ablation studies regarding different system designs and qualitative analysis of the learned representations.}
}

0 comments on commit 70582ec

Please sign in to comment.