-
Notifications
You must be signed in to change notification settings - Fork 184
/
simple_evals.py
184 lines (173 loc) · 6.72 KB
/
simple_evals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import json
import argparse
import pandas as pd
from . import common
from .drop_eval import DropEval
from .gpqa_eval import GPQAEval
from .humaneval_eval import HumanEval
from .math_eval import MathEval
from .mgsm_eval import MGSMEval
from .mmlu_eval import MMLUEval
from .simpleqa_eval import SimpleQAEval
from .sampler.chat_completion_sampler import (
OPENAI_SYSTEM_MESSAGE_API,
OPENAI_SYSTEM_MESSAGE_CHATGPT,
ChatCompletionSampler,
)
from .sampler.o1_chat_completion_sampler import O1ChatCompletionSampler
from .sampler.claude_sampler import ClaudeCompletionSampler, CLAUDE_SYSTEM_MESSAGE_LMSYS
def main():
parser = argparse.ArgumentParser(
description="Run sampling and evaluations using different samplers and evaluations."
)
parser.add_argument(
"--list-models", action="store_true", help="List available models"
)
parser.add_argument("--model", type=str, help="Select a model by name")
parser.add_argument("--debug", action="store_true", help="Run in debug mode")
parser.add_argument(
"--examples", type=int, help="Number of examples to use (overrides default)"
)
args = parser.parse_args()
models = {
# chatgpt models:
"gpt-4o-2024-11-20_assistant": ChatCompletionSampler(
model="gpt-4o-2024-11-20",
system_message=OPENAI_SYSTEM_MESSAGE_API,
max_tokens=2048,
),
"gpt-4o-2024-11-20_chatgpt": ChatCompletionSampler(
model="gpt-4o-2024-11-20",
system_message=OPENAI_SYSTEM_MESSAGE_CHATGPT,
max_tokens=2048,
),
"o1": O1ChatCompletionSampler(
model="o1",
),
"o1-preview": O1ChatCompletionSampler(
model="o1-preview",
),
"o1-mini": O1ChatCompletionSampler(
model="o1-mini",
),
"gpt-4-turbo-2024-04-09_assistant": ChatCompletionSampler(
model="gpt-4-turbo-2024-04-09",
system_message=OPENAI_SYSTEM_MESSAGE_API,
),
"gpt-4-turbo-2024-04-09_chatgpt": ChatCompletionSampler(
model="gpt-4-turbo-2024-04-09",
system_message=OPENAI_SYSTEM_MESSAGE_CHATGPT,
),
"gpt-4o_assistant": ChatCompletionSampler(
model="gpt-4o",
system_message=OPENAI_SYSTEM_MESSAGE_API,
max_tokens=2048,
),
"gpt-4o_chatgpt": ChatCompletionSampler(
model="gpt-4o",
system_message=OPENAI_SYSTEM_MESSAGE_CHATGPT,
max_tokens=2048,
),
"gpt-4o-mini-2024-07-18": ChatCompletionSampler(
model="gpt-4o-mini-2024-07-18",
system_message=OPENAI_SYSTEM_MESSAGE_API,
max_tokens=2048,
),
# claude models:
"claude-3-opus-20240229_empty": ClaudeCompletionSampler(
model="claude-3-opus-20240229",
system_message=CLAUDE_SYSTEM_MESSAGE_LMSYS,
),
}
if args.list_models:
print("Available models:")
for model_name in models.keys():
print(f" - {model_name}")
return
if args.model:
if args.model not in models:
print(f"Error: Model '{args.model}' not found.")
return
models = {args.model: models[args.model]}
grading_sampler = ChatCompletionSampler(model="gpt-4o")
equality_checker = ChatCompletionSampler(model="gpt-4-turbo-preview")
# ^^^ used for fuzzy matching, just for math
def get_evals(eval_name, debug_mode):
num_examples = (
args.examples if args.examples is not None else (5 if debug_mode else None)
)
# Set num_examples = None to reproduce full evals
match eval_name:
case "mmlu":
return MMLUEval(num_examples=1 if debug_mode else num_examples)
case "math":
return MathEval(
equality_checker=equality_checker,
num_examples=num_examples,
n_repeats=1 if debug_mode else 10,
)
case "gpqa":
return GPQAEval(
n_repeats=1 if debug_mode else 10, num_examples=num_examples
)
case "mgsm":
return MGSMEval(num_examples_per_lang=10 if debug_mode else 250)
case "drop":
return DropEval(
num_examples=10 if debug_mode else num_examples,
train_samples_per_prompt=3,
)
case "humaneval":
return HumanEval(num_examples=10 if debug_mode else num_examples)
case "simpleqa":
return SimpleQAEval(
grader_model=grading_sampler,
num_examples=10 if debug_mode else num_examples,
)
case _:
raise Exception(f"Unrecognized eval type: {eval_name}")
evals = {
eval_name: get_evals(eval_name, args.debug)
for eval_name in ["simpleqa", "mmlu", "math", "gpqa", "mgsm", "drop"]
}
print(evals)
debug_suffix = "_DEBUG" if args.debug else ""
print(debug_suffix)
mergekey2resultpath = {}
for model_name, sampler in models.items():
for eval_name, eval_obj in evals.items():
result = eval_obj(sampler)
# ^^^ how to use a sampler
file_stem = f"{eval_name}_{model_name}"
report_filename = f"/tmp/{file_stem}{debug_suffix}.html"
print(f"Writing report to {report_filename}")
with open(report_filename, "w") as fh:
fh.write(common.make_report(result))
metrics = result.metrics | {"score": result.score}
print(metrics)
result_filename = f"/tmp/{file_stem}{debug_suffix}.json"
with open(result_filename, "w") as f:
f.write(json.dumps(metrics, indent=2))
print(f"Writing results to {result_filename}")
mergekey2resultpath[f"{file_stem}"] = result_filename
merge_metrics = []
for eval_model_name, result_filename in mergekey2resultpath.items():
try:
result = json.load(open(result_filename, "r+"))
except Exception as e:
print(e, result_filename)
continue
result = result.get("f1_score", result.get("score", None))
eval_name = eval_model_name[: eval_model_name.find("_")]
model_name = eval_model_name[eval_model_name.find("_") + 1 :]
merge_metrics.append(
{"eval_name": eval_name, "model_name": model_name, "metric": result}
)
merge_metrics_df = pd.DataFrame(merge_metrics).pivot(
index=["model_name"], columns="eval_name"
)
print("\nAll results: ")
print(merge_metrics_df.to_markdown())
return merge_metrics
if __name__ == "__main__":
main()