Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix lint #993

Merged
merged 1 commit into from
Mar 13, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/en/advanced_tutorials/model_analysis.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ The model complexity has three indicators, namely floating-point operations (FLO

The parameter count of a model.

For example, given an input size of `inputs = torch.randn((1, 3, 10, 10))` and a convolutional layer `conv = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3)`, if the output feature map size is `(1, 10, 8, 8)`, then its FLOPs are `17280 = 10*8*8*3*3*3` (where 10*8*8 represents the output feature map size, and 3*3*3 represents the computation for each output), activations are `640 = 10*8*8`, and the parameter count is `280 = 3*10*3*3 + 10` (where 3*10*3*3 represents the size of weights, and 10 represents the size of bias).
For example, given an input size of `inputs = torch.randn((1, 3, 10, 10))` and a convolutional layer `conv = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3)`, if the output feature map size is `(1, 10, 8, 8)`, then its FLOPs are `17280 = 10*8*8*3*3*3` (where `10*8*8` represents the output feature map size, and `3*3*3` represents the computation for each output), activations are `640 = 10*8*8`, and the parameter count is `280 = 3*10*3*3 + 10` (where `3*10*3*3` represents the size of weights, and 10 represents the size of bias).

## Usage

Expand Down