-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcma.py
547 lines (451 loc) · 25.8 KB
/
cma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
# Special thanks to Nikolaus Hansen for providing major part of
# this code. The CMA-ES algorithm is provided in many other languages
# and advanced versions at http://www.lri.fr/~hansen/cmaesintro.html.
"""A module that provides support for the Covariance Matrix Adaptation
Evolution Strategy.
"""
import copy
from math import sqrt, log, exp
import numpy
import tools
class Strategy(object):
"""
A strategy that will keep track of the basic parameters of the CMA-ES
algorithm ([Hansen2001]_).
:param centroid: An iterable object that indicates where to start the
evolution.
:param sigma: The initial standard deviation of the distribution.
:param parameter: One or more parameter to pass to the strategy as
described in the following table, optional.
+----------------+---------------------------+----------------------------+
| Parameter | Default | Details |
+================+===========================+============================+
| ``lambda_`` | ``int(4 + 3 * log(N))`` | Number of children to |
| | | produce at each generation,|
| | | ``N`` is the individual's |
| | | size (integer). |
+----------------+---------------------------+----------------------------+
| ``mu`` | ``int(lambda_ / 2)`` | The number of parents to |
| | | keep from the |
| | | lambda children (integer). |
+----------------+---------------------------+----------------------------+
| ``cmatrix`` | ``identity(N)`` | The initial covariance |
| | | matrix of the distribution |
| | | that will be sampled. |
+----------------+---------------------------+----------------------------+
| ``weights`` | ``"superlinear"`` | Decrease speed, can be |
| | | ``"superlinear"``, |
| | | ``"linear"`` or |
| | | ``"equal"``. |
+----------------+---------------------------+----------------------------+
| ``cs`` | ``(mueff + 2) / | Cumulation constant for |
| | (N + mueff + 3)`` | step-size. |
+----------------+---------------------------+----------------------------+
| ``damps`` | ``1 + 2 * max(0, sqrt(( | Damping for step-size. |
| | mueff - 1) / (N + 1)) - 1)| |
| | + cs`` | |
+----------------+---------------------------+----------------------------+
| ``ccum`` | ``4 / (N + 4)`` | Cumulation constant for |
| | | covariance matrix. |
+----------------+---------------------------+----------------------------+
| ``ccov1`` | ``2 / ((N + 1.3)^2 + | Learning rate for rank-one |
| | mueff)`` | update. |
+----------------+---------------------------+----------------------------+
| ``ccovmu`` | ``2 * (mueff - 2 + 1 / | Learning rate for rank-mu |
| | mueff) / ((N + 2)^2 + | update. |
| | mueff)`` | |
+----------------+---------------------------+----------------------------+
.. [Hansen2001] Hansen and Ostermeier, 2001. Completely Derandomized
Self-Adaptation in Evolution Strategies. *Evolutionary Computation*
"""
def __init__(self, centroid, sigma, **kargs):
self.params = kargs
# Create a centroid as a numpy array
self.centroid = numpy.array(centroid)
self.dim = len(self.centroid)
self.sigma = sigma
self.pc = numpy.zeros(self.dim)
self.ps = numpy.zeros(self.dim)
self.chiN = sqrt(self.dim) * (1 - 1. / (4. * self.dim) +
1. / (21. * self.dim ** 2))
self.C = self.params.get("cmatrix", numpy.identity(self.dim))
self.diagD, self.B = numpy.linalg.eigh(self.C)
indx = numpy.argsort(self.diagD)
self.diagD = self.diagD[indx] ** 0.5
self.B = self.B[:, indx]
self.BD = self.B * self.diagD
self.cond = self.diagD[indx[-1]] / self.diagD[indx[0]]
self.lambda_ = self.params.get("lambda_", int(4 + 3 * log(self.dim)))
self.update_count = 0
self.computeParams(self.params)
def generate(self, ind_init):
"""Generate a population of :math:`\lambda` individuals of type
*ind_init* from the current strategy.
:param ind_init: A function object that is able to initialize an
individual from a list.
:returns: A list of individuals.
"""
arz = numpy.random.standard_normal((self.lambda_, self.dim))
arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T)
return map(ind_init, arz)
def update(self, population):
"""Update the current covariance matrix strategy from the
*population*.
:param population: A list of individuals from which to update the
parameters.
"""
population.sort(key=lambda ind: ind.fitness, reverse=True)
old_centroid = self.centroid
self.centroid = numpy.dot(self.weights, population[0:self.mu])
c_diff = self.centroid - old_centroid
# Cumulation : update evolution path
self.ps = (1 - self.cs) * self.ps \
+ sqrt(self.cs * (2 - self.cs) * self.mueff) / self.sigma \
* numpy.dot(self.B, (1. / self.diagD) *
numpy.dot(self.B.T, c_diff))
hsig = float((numpy.linalg.norm(self.ps) /
sqrt(1. - (1. - self.cs) ** (2. * (self.update_count + 1.))) / self.chiN <
(1.4 + 2. / (self.dim + 1.))))
self.update_count += 1
self.pc = (1 - self.cc) * self.pc + hsig \
* sqrt(self.cc * (2 - self.cc) * self.mueff) / self.sigma \
* c_diff
# Update covariance matrix
artmp = population[0:self.mu] - old_centroid
self.C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) *
self.ccov1 * self.cc * (2 - self.cc)) * self.C \
+ self.ccov1 * numpy.outer(self.pc, self.pc) \
+ self.ccovmu * numpy.dot((self.weights * artmp.T), artmp) \
/ self.sigma ** 2
self.sigma *= numpy.exp((numpy.linalg.norm(self.ps) / self.chiN - 1.) *
self.cs / self.damps)
self.diagD, self.B = numpy.linalg.eigh(self.C)
indx = numpy.argsort(self.diagD)
self.cond = self.diagD[indx[-1]] / self.diagD[indx[0]]
self.diagD = self.diagD[indx] ** 0.5
self.B = self.B[:, indx]
self.BD = self.B * self.diagD
def computeParams(self, params):
"""Computes the parameters depending on :math:`\lambda`. It needs to
be called again if :math:`\lambda` changes during evolution.
:param params: A dictionary of the manually set parameters.
"""
self.mu = params.get("mu", int(self.lambda_ / 2))
rweights = params.get("weights", "superlinear")
if rweights == "superlinear":
self.weights = log(self.mu + 0.5) - \
numpy.log(numpy.arange(1, self.mu + 1))
elif rweights == "linear":
self.weights = self.mu + 0.5 - numpy.arange(1, self.mu + 1)
elif rweights == "equal":
self.weights = numpy.ones(self.mu)
else:
raise RuntimeError("Unknown weights : %s" % rweights)
self.weights /= sum(self.weights)
self.mueff = 1. / sum(self.weights ** 2)
self.cc = params.get("ccum", 4. / (self.dim + 4.))
self.cs = params.get("cs", (self.mueff + 2.) /
(self.dim + self.mueff + 3.))
self.ccov1 = params.get("ccov1", 2. / ((self.dim + 1.3) ** 2 +
self.mueff))
self.ccovmu = params.get("ccovmu", 2. * (self.mueff - 2. +
1. / self.mueff) /
((self.dim + 2.) ** 2 + self.mueff))
self.ccovmu = min(1 - self.ccov1, self.ccovmu)
self.damps = 1. + 2. * max(0, sqrt((self.mueff - 1.) /
(self.dim + 1.)) - 1.) + self.cs
self.damps = params.get("damps", self.damps)
class StrategyOnePlusLambda(object):
"""
A CMA-ES strategy that uses the :math:`1 + \lambda` paradigm ([Igel2007]_).
:param parent: An iterable object that indicates where to start the
evolution. The parent requires a fitness attribute.
:param sigma: The initial standard deviation of the distribution.
:param lambda_: Number of offspring to produce from the parent.
(optional, defaults to 1)
:param parameter: One or more parameter to pass to the strategy as
described in the following table. (optional)
Other parameters can be provided as described in the next table
+----------------+---------------------------+----------------------------+
| Parameter | Default | Details |
+================+===========================+============================+
| ``d`` | ``1.0 + N / (2.0 * | Damping for step-size. |
| | lambda_)`` | |
+----------------+---------------------------+----------------------------+
| ``ptarg`` | ``1.0 / (5 + sqrt(lambda_)| Taget success rate. |
| | / 2.0)`` | |
+----------------+---------------------------+----------------------------+
| ``cp`` | ``ptarg * lambda_ / (2.0 +| Step size learning rate. |
| | ptarg * lambda_)`` | |
+----------------+---------------------------+----------------------------+
| ``cc`` | ``2.0 / (N + 2.0)`` | Cumulation time horizon. |
+----------------+---------------------------+----------------------------+
| ``ccov`` | ``2.0 / (N**2 + 6.0)`` | Covariance matrix learning |
| | | rate. |
+----------------+---------------------------+----------------------------+
| ``pthresh`` | ``0.44`` | Threshold success rate. |
+----------------+---------------------------+----------------------------+
.. [Igel2007] Igel, Hansen, Roth, 2007. Covariance matrix adaptation for
multi-objective optimization. *Evolutionary Computation* Spring;15(1):1-28
"""
def __init__(self, parent, sigma, **kargs):
self.parent = parent
self.sigma = sigma
self.dim = len(self.parent)
self.C = numpy.identity(self.dim)
self.A = numpy.identity(self.dim)
self.pc = numpy.zeros(self.dim)
self.computeParams(kargs)
self.psucc = self.ptarg
def computeParams(self, params):
"""Computes the parameters depending on :math:`\lambda`. It needs to
be called again if :math:`\lambda` changes during evolution.
:param params: A dictionary of the manually set parameters.
"""
# Selection :
self.lambda_ = params.get("lambda_", 1)
# Step size control :
self.d = params.get("d", 1.0 + self.dim / (2.0 * self.lambda_))
self.ptarg = params.get("ptarg", 1.0 / (5 + sqrt(self.lambda_) / 2.0))
self.cp = params.get("cp", self.ptarg * self.lambda_ / (2 + self.ptarg * self.lambda_))
# Covariance matrix adaptation
self.cc = params.get("cc", 2.0 / (self.dim + 2.0))
self.ccov = params.get("ccov", 2.0 / (self.dim ** 2 + 6.0))
self.pthresh = params.get("pthresh", 0.44)
def generate(self, ind_init):
"""Generate a population of :math:`\lambda` individuals of type
*ind_init* from the current strategy.
:param ind_init: A function object that is able to initialize an
individual from a list.
:returns: A list of individuals.
"""
# self.y = numpy.dot(self.A, numpy.random.standard_normal(self.dim))
arz = numpy.random.standard_normal((self.lambda_, self.dim))
arz = self.parent + self.sigma * numpy.dot(arz, self.A.T)
return map(ind_init, arz)
def update(self, population):
"""Update the current covariance matrix strategy from the
*population*.
:param population: A list of individuals from which to update the
parameters.
"""
population.sort(key=lambda ind: ind.fitness, reverse=True)
lambda_succ = sum(self.parent.fitness <= ind.fitness for ind in population)
p_succ = float(lambda_succ) / self.lambda_
self.psucc = (1 - self.cp) * self.psucc + self.cp * p_succ
if self.parent.fitness <= population[0].fitness:
x_step = (population[0] - numpy.array(self.parent)) / self.sigma
self.parent = copy.deepcopy(population[0])
if self.psucc < self.pthresh:
self.pc = (1 - self.cc) * self.pc + sqrt(self.cc * (2 - self.cc)) * x_step
self.C = (1 - self.ccov) * self.C + self.ccov * numpy.outer(self.pc, self.pc)
else:
self.pc = (1 - self.cc) * self.pc
self.C = (1 - self.ccov) * self.C + self.ccov * (numpy.outer(self.pc, self.pc) + self.cc * (2 - self.cc) * self.C)
self.sigma = self.sigma * exp(1.0 / self.d * (self.psucc - self.ptarg) / (1.0 - self.ptarg))
# We use Cholesky since for now we have no use of eigen decomposition
# Basically, Cholesky returns a matrix A as C = A*A.T
# Eigen decomposition returns two matrix B and D^2 as C = B*D^2*B.T = B*D*D*B.T
# So A == B*D
# To compute the new individual we need to multiply each vector z by A
# as y = centroid + sigma * A*z
# So the Cholesky is more straightforward as we don't need to compute
# the squareroot of D^2, and multiply B and D in order to get A, we directly get A.
# This can't be done (without cost) with the standard CMA-ES as the eigen decomposition is used
# to compute covariance matrix inverse in the step-size evolutionary path computation.
self.A = numpy.linalg.cholesky(self.C)
class StrategyMultiObjective(object):
"""Multiobjective CMA-ES strategy based on the paper [Voss2010]_. It
is used similarly as the standard CMA-ES strategy with a generate-update
scheme.
:param population: An initial population of individual.
:param sigma: The initial step size of the complete system.
:param mu: The number of parents to use in the evolution. When not
provided it defaults to the length of *population*. (optional)
:param lambda_: The number of offspring to produce at each generation.
(optional, defaults to 1)
:param indicator: The indicator function to use. (optional, default to
:func:`~deap.tools.hypervolume`)
Other parameters can be provided as described in the next table
+----------------+---------------------------+----------------------------+
| Parameter | Default | Details |
+================+===========================+============================+
| ``d`` | ``1.0 + N / 2.0`` | Damping for step-size. |
+----------------+---------------------------+----------------------------+
| ``ptarg`` | ``1.0 / (5 + 1.0 / 2.0)`` | Taget success rate. |
+----------------+---------------------------+----------------------------+
| ``cp`` | ``ptarg / (2.0 + ptarg)`` | Step size learning rate. |
+----------------+---------------------------+----------------------------+
| ``cc`` | ``2.0 / (N + 2.0)`` | Cumulation time horizon. |
+----------------+---------------------------+----------------------------+
| ``ccov`` | ``2.0 / (N**2 + 6.0)`` | Covariance matrix learning |
| | | rate. |
+----------------+---------------------------+----------------------------+
| ``pthresh`` | ``0.44`` | Threshold success rate. |
+----------------+---------------------------+----------------------------+
.. [Voss2010] Voss, Hansen, Igel, "Improved Step Size Adaptation
for the MO-CMA-ES", 2010.
"""
def __init__(self, population, sigma, **params):
self.parents = population
self.dim = len(self.parents[0])
# Selection
self.mu = params.get("mu", len(self.parents))
self.lambda_ = params.get("lambda_", 1)
# Step size control
self.d = params.get("d", 1.0 + self.dim / 2.0)
self.ptarg = params.get("ptarg", 1.0 / (5.0 + 0.5))
self.cp = params.get("cp", self.ptarg / (2.0 + self.ptarg))
# Covariance matrix adaptation
self.cc = params.get("cc", 2.0 / (self.dim + 2.0))
self.ccov = params.get("ccov", 2.0 / (self.dim ** 2 + 6.0))
self.pthresh = params.get("pthresh", 0.44)
# Internal parameters associated to the mu parent
self.sigmas = [sigma] * len(population)
# Lower Cholesky matrix (Sampling matrix)
self.A = [numpy.identity(self.dim) for _ in range(len(population))]
# Inverse Cholesky matrix (Used in the update of A)
self.invCholesky = [numpy.identity(self.dim) for _ in range(len(population))]
self.pc = [numpy.zeros(self.dim) for _ in range(len(population))]
self.psucc = [self.ptarg] * len(population)
self.indicator = params.get("indicator", tools.hypervolume)
def generate(self, ind_init):
"""Generate a population of :math:`\lambda` individuals of type
*ind_init* from the current strategy.
:param ind_init: A function object that is able to initialize an
individual from a list.
:returns: A list of individuals with a private attribute :attr:`_ps`.
This last attribute is essential to the update function, it
indicates that the individual is an offspring and the index
of its parent.
"""
arz = numpy.random.randn(self.lambda_, self.dim)
individuals = list()
# Make sure every parent has a parent tag and index
for i, p in enumerate(self.parents):
p._ps = "p", i
# Each parent produce an offspring
if self.lambda_ == self.mu:
for i in range(self.lambda_):
# print "Z", list(arz[i])
individuals.append(ind_init(self.parents[i] + self.sigmas[i] * numpy.dot(self.A[i], arz[i])))
individuals[-1]._ps = "o", i
# Parents producing an offspring are chosen at random from the first front
else:
ndom = tools.sortLogNondominated(self.parents, len(self.parents), first_front_only=True)
for i in range(self.lambda_):
j = numpy.random.randint(0, len(ndom))
_, p_idx = ndom[j]._ps
individuals.append(ind_init(self.parents[p_idx] + self.sigmas[p_idx] * numpy.dot(self.A[p_idx], arz[i])))
individuals[-1]._ps = "o", p_idx
return individuals
def _select(self, candidates):
if len(candidates) <= self.mu:
return candidates, []
pareto_fronts = tools.sortLogNondominated(candidates, len(candidates))
chosen = list()
mid_front = None
not_chosen = list()
# Fill the next population (chosen) with the fronts until there is not enouch space
# When an entire front does not fit in the space left we rely on the hypervolume
# for this front
# The remaining fronts are explicitely not chosen
full = False
for front in pareto_fronts:
if len(chosen) + len(front) <= self.mu and not full:
chosen += front
elif mid_front is None and len(chosen) < self.mu:
mid_front = front
# With this front, we selected enough individuals
full = True
else:
not_chosen += front
# Separate the mid front to accept only k individuals
k = self.mu - len(chosen)
if k > 0:
# reference point is chosen in the complete population
# as the worst in each dimension +1
ref = numpy.array([ind.fitness.wvalues for ind in candidates]) * -1
ref = numpy.max(ref, axis=0) + 1
for _ in range(len(mid_front) - k):
idx = self.indicator(mid_front, ref=ref)
not_chosen.append(mid_front.pop(idx))
chosen += mid_front
return chosen, not_chosen
def _rankOneUpdate(self, invCholesky, A, alpha, beta, v):
w = numpy.dot(invCholesky, v)
# Under this threshold, the update is mostly noise
if w.max() > 1e-20:
w_inv = numpy.dot(w, invCholesky)
norm_w2 = numpy.sum(w ** 2)
a = sqrt(alpha)
root = numpy.sqrt(1 + beta / alpha * norm_w2)
b = a / norm_w2 * (root - 1)
A = a * A + b * numpy.outer(v, w)
invCholesky = 1.0 / a * invCholesky - b / (a ** 2 + a * b * norm_w2) * numpy.outer(w, w_inv)
return invCholesky, A
def update(self, population):
"""Update the current covariance matrix strategies from the
*population*.
:param population: A list of individuals from which to update the
parameters.
"""
chosen, not_chosen = self._select(population + self.parents)
cp, cc, ccov = self.cp, self.cc, self.ccov
d, ptarg, pthresh = self.d, self.ptarg, self.pthresh
# Make copies for chosen offspring only
last_steps = [self.sigmas[ind._ps[1]] if ind._ps[0] == "o" else None for ind in chosen]
sigmas = [self.sigmas[ind._ps[1]] if ind._ps[0] == "o" else None for ind in chosen]
invCholesky = [self.invCholesky[ind._ps[1]].copy() if ind._ps[0] == "o" else None for ind in chosen]
A = [self.A[ind._ps[1]].copy() if ind._ps[0] == "o" else None for ind in chosen]
pc = [self.pc[ind._ps[1]].copy() if ind._ps[0] == "o" else None for ind in chosen]
psucc = [self.psucc[ind._ps[1]] if ind._ps[0] == "o" else None for ind in chosen]
# Update the internal parameters for successful offspring
for i, ind in enumerate(chosen):
t, p_idx = ind._ps
# Only the offspring update the parameter set
if t == "o":
# Update (Success = 1 since it is chosen)
psucc[i] = (1.0 - cp) * psucc[i] + cp
sigmas[i] = sigmas[i] * exp((psucc[i] - ptarg) / (d * (1.0 - ptarg)))
if psucc[i] < pthresh:
xp = numpy.array(ind)
x = numpy.array(self.parents[p_idx])
pc[i] = (1.0 - cc) * pc[i] + sqrt(cc * (2.0 - cc)) * (xp - x) / last_steps[i]
invCholesky[i], A[i] = self._rankOneUpdate(invCholesky[i], A[i], 1 - ccov, ccov, pc[i])
else:
pc[i] = (1.0 - cc) * pc[i]
pc_weight = cc * (2.0 - cc)
invCholesky[i], A[i] = self._rankOneUpdate(invCholesky[i], A[i], 1 - ccov + pc_weight, ccov, pc[i])
self.psucc[p_idx] = (1.0 - cp) * self.psucc[p_idx] + cp
self.sigmas[p_idx] = self.sigmas[p_idx] * exp((self.psucc[p_idx] - ptarg) / (d * (1.0 - ptarg)))
# It is unnecessary to update the entire parameter set for not chosen individuals
# Their parameters will not make it to the next generation
for ind in not_chosen:
t, p_idx = ind._ps
# Only the offspring update the parameter set
if t == "o":
self.psucc[p_idx] = (1.0 - cp) * self.psucc[p_idx]
self.sigmas[p_idx] = self.sigmas[p_idx] * exp((self.psucc[p_idx] - ptarg) / (d * (1.0 - ptarg)))
# Make a copy of the internal parameters
# The parameter is in the temporary variable for offspring and in the original one for parents
self.parents = chosen
self.sigmas = [sigmas[i] if ind._ps[0] == "o" else self.sigmas[ind._ps[1]] for i, ind in enumerate(chosen)]
self.invCholesky = [invCholesky[i] if ind._ps[0] == "o" else self.invCholesky[ind._ps[1]] for i, ind in enumerate(chosen)]
self.A = [A[i] if ind._ps[0] == "o" else self.A[ind._ps[1]] for i, ind in enumerate(chosen)]
self.pc = [pc[i] if ind._ps[0] == "o" else self.pc[ind._ps[1]] for i, ind in enumerate(chosen)]
self.psucc = [psucc[i] if ind._ps[0] == "o" else self.psucc[ind._ps[1]] for i, ind in enumerate(chosen)]