Skip to content

Commit

Permalink
add Resnet ce (PaddlePaddle#2502)
Browse files Browse the repository at this point in the history
* add ce for dygraph mnist

* add ce for dygraph mnist

* del mnist_dygraph.py

* change mnist_dygraph to train

* fix print style

* add resnet

* fix ce bug

* fix ce decsription
  • Loading branch information
DDDivano authored Jun 25, 2019
1 parent 4bb42e2 commit c25124d
Show file tree
Hide file tree
Showing 3 changed files with 100 additions and 6 deletions.
8 changes: 8 additions & 0 deletions dygraph/resnet/.run_ce.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#!/bin/bash

# This file is only used for continuous evaluation.
# dygraph single card
export FLAGS_cudnn_deterministic=True
export CUDA_VISIBLE_DEVICES=0
python train.py --ce --epoch 1 --batch_size 128 | python _ce.py

70 changes: 70 additions & 0 deletions dygraph/resnet/_ce.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
####this file is only used for continuous evaluation test!
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
sys.path.append(os.environ['ceroot'])
from kpi import CostKpi, DurationKpi, AccKpi

#### NOTE kpi.py should shared in models in some way!!!!

train_acc1 = AccKpi('train_acc1', 0.01, 0, actived=True, desc="train acc1")
train_acc5 = AccKpi('train_acc5', 0.01, 0, actived=True, desc="train acc5")
train_loss = CostKpi('train_loss', 0.01, 0, actived=True, desc="train loss")
test_acc1 = AccKpi('test_acc1', 0.01, 0, actived=True, desc='test acc1')
test_acc5 = AccKpi('test_acc5', 0.01, 0, actived=True, desc='test acc5')
test_loss = CostKpi('test_loss', 0.01, 0, actived=True, desc='test loss')
#train_speed_kpi = DurationKpi(
# 'train_speed',
# 0.05,
# 0,
# actived=True,
# unit_repr='seconds/image',
# desc='train speed in one GPU card')
tracking_kpis = [train_acc1, train_acc5, train_loss,
test_acc1, test_acc5, test_loss]

def parse_log(log):
'''
This method should be implemented by model developers.
The suggestion:
each line in the log should be key, value, for example:
"
train_cost\t1.0
test_cost\t1.0
train_cost\t1.0
train_cost\t1.0
train_acc\t1.2
"
'''
for line in log.split('\n'):
fs = line.strip().split('\t')
print(fs)
if len(fs) == 3 and fs[0] == 'kpis':
print("-----%s" % fs)
kpi_name = fs[1]
kpi_value = float(fs[2])
yield kpi_name, kpi_value


def log_to_ce(log):
kpi_tracker = {}
for kpi in tracking_kpis:
kpi_tracker[kpi.name] = kpi

for (kpi_name, kpi_value) in parse_log(log):
print(kpi_name, kpi_value)
kpi_tracker[kpi_name].add_record(kpi_value)
kpi_tracker[kpi_name].persist()


if __name__ == '__main__':
log = sys.stdin.read()
print("*****")
print(log)
print("****")
log_to_ce(log)
28 changes: 22 additions & 6 deletions dygraph/resnet/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,27 +26,28 @@
import math
import sys

batch_size = 32
epoch = 120
IMAGENET1000 = 1281167
base_lr = 0.1
momentum_rate = 0.9
l2_decay = 1e-4


def parse_args():
parser = argparse.ArgumentParser("Training for Mnist.")
parser = argparse.ArgumentParser("Training for Resnet.")
parser.add_argument(
"--use_data_parallel",
type=ast.literal_eval,
default=False,
help="The flag indicating whether to shuffle instances in each pass.")
parser.add_argument("-e", "--epoch", default=120, type=int, help="set epoch")
parser.add_argument("-b", "--batch_size", default=32, type=int, help="set epoch")
parser.add_argument("--ce", action="store_true", help="run ce")
args = parser.parse_args()
return args


args = parse_args()

batch_size = args.batch_size

def optimizer_setting():

Expand Down Expand Up @@ -263,16 +264,28 @@ def eval(model, data):
print("test | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
( batch_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample))
if args.ce:
print("kpis\ttest_acc1\t%0.3f" % (total_acc1 / total_sample))
print("kpis\ttest_acc5\t%0.3f" % (total_acc5 / total_sample))
print("kpis\ttest_loss\t%0.3f" % (total_loss / total_sample))
print("final eval loss %0.3f acc1 %0.3f acc5 %0.3f" % \
(total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample))


def train_resnet():
epoch = args.epoch
trainer_count = fluid.dygraph.parallel.Env().nranks
place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \
if args.use_data_parallel else fluid.CUDAPlace(0)
with fluid.dygraph.guard(place):
if args.ce:
print("ce mode")
seed = 33
np.random.seed(seed)
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed

if args.use_data_parallel:
strategy = fluid.dygraph.parallel.prepare_context()

Expand Down Expand Up @@ -340,24 +353,27 @@ def train_resnet():
optimizer.minimize(avg_loss)
resnet.clear_gradients()

framework._dygraph_tracer_._clear_ops()

total_loss += dy_out
total_acc1 += acc_top1.numpy()
total_acc5 += acc_top5.numpy()
total_sample += 1

#print("epoch id: %d, batch step: %d, loss: %f" % (eop, batch_id, dy_out))
if batch_id % 10 == 0:
print( "epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
( eop, batch_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample))

if args.ce:
print("kpis\ttrain_acc1\t%0.3f" % (total_acc1 / total_sample))
print("kpis\ttrain_acc5\t%0.3f" % (total_acc5 / total_sample))
print("kpis\ttrain_loss\t%0.3f" % (total_loss / total_sample))
print("epoch %d | batch step %d, loss %0.3f acc1 %0.3f acc5 %0.3f" % \
(eop, batch_id, total_loss / total_sample, \
total_acc1 / total_sample, total_acc5 / total_sample))
resnet.eval()
eval(resnet, test_reader)
fluid.dygraph.save_persistables(resnet.state_dict(), 'resnet_params')


if __name__ == '__main__':
Expand Down

0 comments on commit c25124d

Please sign in to comment.