Skip to content

Commit

Permalink
Rename v2 to legacy (PaddlePaddle#1323)
Browse files Browse the repository at this point in the history
  • Loading branch information
qingqing01 authored Sep 29, 2018
1 parent 30a031d commit 8bca0e4
Show file tree
Hide file tree
Showing 254 changed files with 19 additions and 19 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ PaddlePaddle provides a rich set of computational units to enable users to adopt

- [fluid models](fluid): use PaddlePaddle's Fluid APIs. We especially recommend users to use Fluid models.

- [v2 models](v2): use PaddlePaddle's v2 APIs.
- [legacy models](legacy): use PaddlePaddle's v2 APIs.


## License
Expand Down
File renamed without changes.
36 changes: 18 additions & 18 deletions v2/README.md → legacy/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -12,31 +12,31 @@ The word embedding expresses words with a real vector. Each dimension of the vec

In the example of word vectors, we show how to use Hierarchical-Sigmoid and Noise Contrastive Estimation (NCE) to accelerate word-vector learning.

- 1.1 [Hsigmoid Accelerated Word Vector Training](https://github.com/PaddlePaddle/models/tree/develop/v2/hsigmoid)
- 1.2 [Noise Contrastive Estimation Accelerated Word Vector Training](https://github.com/PaddlePaddle/models/tree/develop/v2/nce_cost)
- 1.1 [Hsigmoid Accelerated Word Vector Training](https://github.com/PaddlePaddle/models/tree/develop/legacy/hsigmoid)
- 1.2 [Noise Contrastive Estimation Accelerated Word Vector Training](https://github.com/PaddlePaddle/models/tree/develop/legacy/nce_cost)


## 2. RNN language model

The language model is important in the field of natural language processing. In addition to getting the word vector (a by-product of language model training), it can also help us to generate text. Given a number of words, the language model can help us predict the next most likely word. In the example of using the language model to generate text, we focus on the recurrent neural network language model. We can use the instructions in the document quickly adapt to their training corpus, complete automatic writing poetry, automatic writing prose and other interesting models.

- 2.1 [Generate text using the RNN language model](https://github.com/PaddlePaddle/models/tree/develop/v2/generate_sequence_by_rnn_lm)
- 2.1 [Generate text using the RNN language model](https://github.com/PaddlePaddle/models/tree/develop/legacy/generate_sequence_by_rnn_lm)

## 3. Click-Through Rate prediction
The click-through rate model predicts the probability that a user will click on an ad. This is widely used for advertising technology. Logistic Regression has a good learning performance for large-scale sparse features in the early stages of the development of click-through rate prediction. In recent years, DNN model because of its strong learning ability to gradually take the banner rate of the task of the banner.

In the example of click-through rate estimates, we first give the Google's Wide & Deep model. This model combines the advantages of DNN and the applicable logistic regression model for DNN and large-scale sparse features. Then we provide the deep factorization machine for click-through rate prediction. The deep factorization machine combines the factorization machine and deep neural networks to model both low order and high order interactions of input features.

- 3.1 [Click-Through Rate Model](https://github.com/PaddlePaddle/models/tree/develop/v2/ctr)
- 3.2 [Deep Factorization Machine for Click-Through Rate prediction](https://github.com/PaddlePaddle/models/tree/develop/v2/deep_fm)
- 3.1 [Click-Through Rate Model](https://github.com/PaddlePaddle/models/tree/develop/legacy/ctr)
- 3.2 [Deep Factorization Machine for Click-Through Rate prediction](https://github.com/PaddlePaddle/models/tree/develop/legacy/deep_fm)

## 4. Text classification

Text classification is one of the most basic tasks in natural language processing. The deep learning method can eliminate the complex feature engineering, and use the original text as input to optimize the classification accuracy.

For text classification, we provide a non-sequential text classification model based on DNN and CNN. (For LSTM-based model, please refer to PaddleBook [Sentiment Analysis](http://www.paddlepaddle.org/docs/develop/book/06.understand_sentiment/index.html)).

- 4.1 [Sentiment analysis based on DNN / CNN](https://github.com/PaddlePaddle/models/tree/develop/v2/text_classification)
- 4.1 [Sentiment analysis based on DNN / CNN](https://github.com/PaddlePaddle/models/tree/develop/legacy/text_classification)

## 5. Learning to rank

Expand All @@ -45,42 +45,42 @@ The depth neural network can be used to model the fractional function to form va

The algorithms for learning to rank are usually categorized into three groups by their input representation and the loss function. These are pointwise, pairwise and listwise approaches. Here we demonstrate RankLoss loss function method (pairwise approach), and LambdaRank loss function method (listwise approach). (For Pointwise approaches, please refer to [Recommended System](http://www.paddlepaddle.org/docs/develop/book/05.recommender_system/index.html)).

- 5.1 [Learning to rank based on Pairwise and Listwise approches](https://github.com/PaddlePaddle/models/tree/develop/v2/ltr)
- 5.1 [Learning to rank based on Pairwise and Listwise approches](https://github.com/PaddlePaddle/models/tree/develop/legacy/ltr)

## 6. Semantic model
The deep structured semantic model uses the DNN model to learn the vector representation of the low latitude in a continuous semantic space, finally models the semantic similarity between the two sentences.

In this example, we demonstrate how to use PaddlePaddle to implement a generic deep structured semantic model to model the semantic similarity between two strings. The model supports different network structures such as CNN (Convolutional Network), FC (Fully Connected Network), RNN (Recurrent Neural Network), and different loss functions such as classification, regression, and sequencing.

- 6.1 [Deep structured semantic model](https://github.com/PaddlePaddle/models/tree/develop/v2/dssm)
- 6.1 [Deep structured semantic model](https://github.com/PaddlePaddle/models/tree/develop/legacy/dssm)

## 7. Sequence tagging

Given the input sequence, the sequence tagging model is one of the most basic tasks in the natural language processing by assigning a category tag to each element in the sequence. Recurrent neural network models with Conditional Random Field (CRF) are commonly used for sequence tagging tasks.

In the example of the sequence tagging, we describe how to train an end-to-end sequence tagging model with the Named Entity Recognition (NER) task as an example.

- 7.1 [Name Entity Recognition](https://github.com/PaddlePaddle/models/tree/develop/v2/sequence_tagging_for_ner)
- 7.1 [Name Entity Recognition](https://github.com/PaddlePaddle/models/tree/develop/legacy/sequence_tagging_for_ner)

## 8. Sequence to sequence learning

Sequence-to-sequence model has a wide range of applications. This includes machine translation, dialogue system, and parse tree generation.

As an example for sequence-to-sequence learning, we take the machine translation task. We demonstrate the sequence-to-sequence mapping model without attention mechanism, which is the basis for all sequence-to-sequence learning models. We will use scheduled sampling to improve the problem of error accumulation in the RNN model, and machine translation with external memory mechanism.

- 8.1 [Basic Sequence-to-sequence model](https://github.com/PaddlePaddle/models/tree/develop/v2/nmt_without_attention)
- 8.1 [Basic Sequence-to-sequence model](https://github.com/PaddlePaddle/models/tree/develop/legacy/nmt_without_attention)

## 9. Image classification

For the example of image classification, we show you how to train AlexNet, VGG, GoogLeNet, ResNet, Inception-v4, Inception-Resnet-V2 and Xception models in PaddlePaddle. It also provides model conversion tools that convert Caffe or TensorFlow trained model files into PaddlePaddle model files.

- 9.1 [convert Caffe model file to PaddlePaddle model file](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification/caffe2paddle)
- 9.2 [convert TensorFlow model file to PaddlePaddle model file](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification/tf2paddle)
- 9.3 [AlexNet](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification)
- 9.4 [VGG](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification)
- 9.5 [Residual Network](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification)
- 9.6 [Inception-v4](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification)
- 9.7 [Inception-Resnet-V2](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification)
- 9.8 [Xception](https://github.com/PaddlePaddle/models/tree/develop/v2/image_classification)
- 9.1 [convert Caffe model file to PaddlePaddle model file](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification/caffe2paddle)
- 9.2 [convert TensorFlow model file to PaddlePaddle model file](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification/tf2paddle)
- 9.3 [AlexNet](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification)
- 9.4 [VGG](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification)
- 9.5 [Residual Network](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification)
- 9.6 [Inception-v4](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification)
- 9.7 [Inception-Resnet-V2](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification)
- 9.8 [Xception](https://github.com/PaddlePaddle/models/tree/develop/legacy/image_classification)

This tutorial is contributed by [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) and licensed under the [Apache-2.0 license](LICENSE).
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

0 comments on commit 8bca0e4

Please sign in to comment.