forked from PaddlePaddle/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_reader.py
98 lines (80 loc) · 2.97 KB
/
data_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from PIL import Image, ImageOps
import numpy as np
DATASET = "cityscapes"
A_LIST_FILE = "./data/"+DATASET+"/trainA.txt"
B_LIST_FILE = "./data/"+DATASET+"/trainB.txt"
A_TEST_LIST_FILE = "./data/"+DATASET+"/testA.txt"
B_TEST_LIST_FILE = "./data/"+DATASET+"/testB.txt"
IMAGES_ROOT = "./data/"+DATASET+"/"
def image_shape():
return [3, 256, 256]
def max_images_num():
return 2974
def reader_creater(list_file, cycle=True, shuffle=True, return_name=False):
images = [IMAGES_ROOT + line for line in open(list_file, 'r').readlines()]
def reader():
while True:
if shuffle:
np.random.shuffle(images)
for file in images:
file = file.strip("\n\r\t ")
image = Image.open(file)
## Resize
image = image.resize((286, 286), Image.BICUBIC)
## RandomCrop
i = np.random.randint(0, 30)
j = np.random.randint(0, 30)
image = image.crop((i, j , i+256, j+256))
# RandomHorizontalFlip
sed = np.random.rand()
if sed > 0.5:
image = ImageOps.mirror(image)
# ToTensor
image = np.array(image).transpose([2, 0, 1]).astype('float32')
image = image / 255.0
# Normalize, mean=[0.5,0.5,0.5], std=[0.5,0.5,0.5]
image = (image - 0.5) / 0.5
if return_name:
yield image[np.newaxis, :], os.path.basename(file)
else:
yield image
if not cycle:
break
return reader
def a_reader(shuffle=True):
"""
Reader of images with A style for training.
"""
return reader_creater(A_LIST_FILE, shuffle=shuffle)
def b_reader(shuffle=True):
"""
Reader of images with B style for training.
"""
return reader_creater(B_LIST_FILE, shuffle=shuffle)
def a_test_reader():
"""
Reader of images with A style for test.
"""
return reader_creater(A_TEST_LIST_FILE, cycle=False, return_name=True)
def b_test_reader():
"""
Reader of images with B style for test.
"""
return reader_creater(B_TEST_LIST_FILE, cycle=False, return_name=True)