-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathTrainTruecaser.py
80 lines (54 loc) · 2.41 KB
/
TrainTruecaser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
This script trains the TrueCase System
"""
import nltk
import nltk.corpus
from nltk.corpus import brown
from nltk.corpus import reuters
import cPickle
import string
import math
import MySQLdb
import MySQLdb.cursors
import nltk.data
from TrainFunctions import *
from EvaluateTruecaser import defaultTruecaserEvaluation
uniDist = nltk.FreqDist()
backwardBiDist = nltk.FreqDist()
forwardBiDist = nltk.FreqDist()
trigramDist = nltk.FreqDist()
wordCasingLookup = {}
"""
There are three options to train the true caser:
1) Use the sentences in NLTK
2) Use the train.txt file. Each line must contain a single sentence. Use a large corpus, for example Wikipedia
3) Use Bigrams + Trigrams count from the website http://www.ngrams.info/download_coca.asp
The more training data, the better the results
"""
# :: Option 1: Train it based on NLTK corpus ::
print "Update from NLTK Corpus"
NLTKCorpus = brown.sents()+reuters.sents()+nltk.corpus.semcor.sents()+nltk.corpus.conll2000.sents()+nltk.corpus.state_union.sents()
updateDistributionsFromSentences(NLTKCorpus, wordCasingLookup, uniDist, backwardBiDist, forwardBiDist, trigramDist)
# :: Option 2: Train it based the train.txt file ::
""" #Uncomment, if you want to train from train.txt
print "Update from train.txt file"
sentences = []
for line in open('train.txt'):
sentences.append(line.strip())
tokens = [nltk.word_tokenize(sentence) for sentence in sentences]
updateDistributionsFromSentences(tokens, wordCasingLookup, uniDist, backwardBiDist, forwardBiDist, trigramDist)
"""
# :: Option 3: Train it based ngrams tables from http://www.ngrams.info/download_coca.asp ::
""" #Uncomment, if you want to train from train.txt
print "Update Bigrams / Trigrams"
updateDistributionsFromNgrams('ngrams/w2.txt', 'ngrams/w3.txt', wordCasingLookup, uniDist, backwardBiDist, forwardBiDist, trigramDist)
"""
f = open('distributions.obj', 'wb')
cPickle.dump(uniDist, f, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(backwardBiDist, f, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(forwardBiDist, f, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(trigramDist, f, protocol=cPickle.HIGHEST_PROTOCOL)
cPickle.dump(wordCasingLookup, f, protocol=cPickle.HIGHEST_PROTOCOL)
f.close()
# :: Correct sentences ::
defaultTruecaserEvaluation(wordCasingLookup, uniDist, backwardBiDist, forwardBiDist, trigramDist)