forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontrol.py
223 lines (171 loc) · 5.87 KB
/
control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Model-predictive non-linear control example.
"""
import collections
from jax import lax, grad, jacfwd, jacobian, vmap
import jax.numpy as jnp
import jax.ops as jo
# Specifies a general finite-horizon, time-varying control problem. Given cost
# function `c`, transition function `f`, and initial state `x0`, the goal is to
# compute:
#
# argmin(lambda X, U: c(T, X[T]) + sum(c(t, X[t], U[t]) for t in range(T)))
#
# subject to the constraints that `X[0] == x0` and that:
#
# all(X[t + 1] == f(X[t], U[t]) for t in range(T)) .
#
# The special case in which `c` is quadratic and `f` is linear is the
# linear-quadratic regulator (LQR) problem, and can be specified explicity
# further below.
#
ControlSpec = collections.namedtuple(
'ControlSpec', 'cost dynamics horizon state_dim control_dim')
# Specifies a finite-horizon, time-varying LQR problem. Notation:
#
# cost(t, x, u) = sum(
# dot(x.T, Q[t], x) + dot(q[t], x) +
# dot(u.T, R[t], u) + dot(r[t], u) +
# dot(x.T, M[t], u)
#
# dynamics(t, x, u) = dot(A[t], x) + dot(B[t], u)
#
LqrSpec = collections.namedtuple('LqrSpec', 'Q q R r M A B')
dot = jnp.dot
mm = jnp.matmul
def mv(mat, vec):
assert mat.ndim == 2
assert vec.ndim == 1
return dot(mat, vec)
LOOP_VIA_SCAN = False
def fori_loop(lo, hi, loop, init):
if LOOP_VIA_SCAN:
return scan_fori_loop(lo, hi, loop, init)
else:
return lax.fori_loop(lo, hi, loop, init)
def scan_fori_loop(lo, hi, loop, init):
def scan_f(x, t):
return loop(t, x), ()
x, _ = lax.scan(scan_f, init, jnp.arange(lo, hi))
return x
def trajectory(dynamics, U, x0):
'''Unrolls `X[t+1] = dynamics(t, X[t], U[t])`, where `X[0] = x0`.'''
T, _ = U.shape
d, = x0.shape
X = jnp.zeros((T + 1, d))
X = jo.index_update(X, jo.index[0], x0)
def loop(t, X):
x = dynamics(t, X[t], U[t])
X = jo.index_update(X, jo.index[t + 1], x)
return X
return fori_loop(0, T, loop, X)
def make_lqr_approx(p):
T = p.horizon
def approx_timestep(t, x, u):
M = jacfwd(grad(p.cost, argnums=2), argnums=1)(t, x, u).T
Q = jacfwd(grad(p.cost, argnums=1), argnums=1)(t, x, u)
R = jacfwd(grad(p.cost, argnums=2), argnums=2)(t, x, u)
q, r = grad(p.cost, argnums=(1, 2))(t, x, u)
A, B = jacobian(p.dynamics, argnums=(1, 2))(t, x, u)
return Q, q, R, r, M, A, B
_approx = vmap(approx_timestep)
def approx(X, U):
assert X.shape[0] == T + 1 and U.shape[0] == T
U_pad = jnp.vstack((U, jnp.zeros((1,) + U.shape[1:])))
Q, q, R, r, M, A, B = _approx(jnp.arange(T + 1), X, U_pad)
return LqrSpec(Q, q, R[:T], r[:T], M[:T], A[:T], B[:T])
return approx
def lqr_solve(spec):
EPS = 1e-7
T, control_dim, _ = spec.R.shape
_, state_dim, _ = spec.Q.shape
K = jnp.zeros((T, control_dim, state_dim))
k = jnp.zeros((T, control_dim))
def rev_loop(t_, state):
t = T - t_ - 1
spec, P, p, K, k = state
Q, q = spec.Q[t], spec.q[t]
R, r = spec.R[t], spec.r[t]
M = spec.M[t]
A, B = spec.A[t], spec.B[t]
AtP = mm(A.T, P)
BtP = mm(B.T, P)
G = R + mm(BtP, B)
H = mm(BtP, A) + M.T
h = r + mv(B.T, p)
K_ = -jnp.linalg.solve(G + EPS * jnp.eye(G.shape[0]), H)
k_ = -jnp.linalg.solve(G + EPS * jnp.eye(G.shape[0]), h)
P_ = Q + mm(AtP, A) + mm(K_.T, H)
p_ = q + mv(A.T, p) + mv(K_.T, h)
K = jo.index_update(K, jo.index[t], K_)
k = jo.index_update(k, jo.index[t], k_)
return spec, P_, p_, K, k
_, P, p, K, k = fori_loop(
0, T, rev_loop,
(spec, spec.Q[T + 1], spec.q[T + 1], K, k))
return K, k
def lqr_predict(spec, x0):
T, control_dim, _ = spec.R.shape
_, state_dim, _ = spec.Q.shape
K, k = lqr_solve(spec)
def fwd_loop(t, state):
spec, X, U = state
A, B = spec.A[t], spec.B[t]
u = mv(K[t], X[t]) + k[t]
x = mv(A, X[t]) + mv(B, u)
X = jo.index_update(X, jo.index[t + 1], x)
U = jo.index_update(U, jo.index[t], u)
return spec, X, U
U = jnp.zeros((T, control_dim))
X = jnp.zeros((T + 1, state_dim))
X = jo.index_update(X, jo.index[0], x0)
_, X, U = fori_loop(0, T, fwd_loop, (spec, X, U))
return X, U
def ilqr(iterations, p, x0, U):
assert x0.ndim == 1 and x0.shape[0] == p.state_dim, x0.shape
assert U.ndim > 0 and U.shape[0] == p.horizon, (U.shape, p.horizon)
lqr_approx = make_lqr_approx(p)
def loop(_, state):
X, U = state
p_lqr = lqr_approx(X, U)
dX, dU = lqr_predict(p_lqr, jnp.zeros_like(x0))
U = U + dU
X = trajectory(p.dynamics, U, X[0] + dX[0])
return X, U
X = trajectory(p.dynamics, U, x0)
return fori_loop(0, iterations, loop, (X, U))
def mpc_predict(solver, p, x0, U):
assert x0.ndim == 1 and x0.shape[0] == p.state_dim
T = p.horizon
def zero_padded_controls_window(U, t):
U_pad = jnp.vstack((U, jnp.zeros(U.shape)))
return lax.dynamic_slice_in_dim(U_pad, t, T, axis=0)
def loop(t, state):
cost = lambda t_, x, u: p.cost(t + t_, x, u)
dyns = lambda t_, x, u: p.dynamics(t + t_, x, u)
X, U = state
p_ = ControlSpec(cost, dyns, T, p.state_dim, p.control_dim)
xt = X[t]
U_rem = zero_padded_controls_window(U, t)
_, U_ = solver(p_, xt, U_rem)
ut = U_[0]
x = p.dynamics(t, xt, ut)
X = jo.index_update(X, jo.index[t + 1], x)
U = jo.index_update(U, jo.index[t], ut)
return X, U
X = jnp.zeros((T + 1, p.state_dim))
X = jo.index_update(X, jo.index[0], x0)
return fori_loop(0, T, loop, (X, U))