Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

bert-base-uncased #246

Open
wyk816 opened this issue Feb 11, 2023 · 2 comments
Open

bert-base-uncased #246

wyk816 opened this issue Feb 11, 2023 · 2 comments

Comments

@wyk816
Copy link

wyk816 commented Feb 11, 2023

博主您好,本地bert-base-uncased预训练模型应该放在哪个路径下?需要修改什么吗?期待您的回复。

@CSgaoan
Copy link

CSgaoan commented Oct 16, 2023

博主您好,本地bert-base-uncased预训练模型应该放在哪个路径下?需要修改什么吗?期待您的回复。

拙见如下:你将下载的模型放在temp_dir路径下,然后在train_abstractive.py和train_extractive.py的223行253行330行的(可能有几行偏差,将路径都改为绝对路径temp_dir)
再在文件的首部加上from others.tokenization import BertTokenizer
图片如下:
image
你还需要在model_builder.py文件做如何修改
image

就是路径问题,多改就好

1 similar comment
@CSgaoan
Copy link

CSgaoan commented Oct 16, 2023

博主您好,本地bert-base-uncased预训练模型应该放在哪个路径下?需要修改什么吗?期待您的回复。

拙见如下:你将下载的模型放在temp_dir路径下,然后在train_abstractive.py和train_extractive.py的223行253行330行的(可能有几行偏差,将路径都改为绝对路径temp_dir)
再在文件的首部加上from others.tokenization import BertTokenizer
图片如下:
image
你还需要在model_builder.py文件做如何修改
image

就是路径问题,多改就好

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants