-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtranslate.py
executable file
·471 lines (404 loc) · 19.3 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division
import onmt
import onmt.markdown
import torch
import argparse
import math
import numpy
import sys
import h5py as h5
import numpy as np
import apex
from onmt.inference.fast_translator import FastTranslator
from onmt.inference.stream_translator import StreamTranslator
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # otherwise the device order pytorch sees is different from listed by nvidia-smi
parser = argparse.ArgumentParser(description='translate.py')
onmt.markdown.add_md_help_argument(parser)
parser.add_argument('-model', required=True,
help='Path to model .pt file')
parser.add_argument('-streaming', action="store_true",
help="""Use streaming mode (for model with streaming)""")
parser.add_argument('-lm', required=False,
help='Path to language model .pt file. Used for cold fusion')
parser.add_argument('-autoencoder', required=False,
help='Path to autoencoder .pt file')
parser.add_argument('-input_type', default="word",
help="Input type: word/char")
parser.add_argument('-src', required=True,
help='Source sequence to decode (one line per sequence)')
parser.add_argument('-src_lang', default='src',
help='Source language')
parser.add_argument('-tgt_lang', default='tgt',
help='Target language')
parser.add_argument('-attributes', default="",
help='Attributes for the decoder. Split them by | ')
parser.add_argument('-stride', type=int, default=1,
help="Stride on input features")
parser.add_argument('-concat', type=str, default="1",
help="Concate sequential audio features to decrease sequence length")
parser.add_argument('-asr_format', default="h5", required=False,
help="Format of asr data h5 or scp")
parser.add_argument('-encoder_type', default='text',
help="Type of encoder to use. Options are [text|img|audio].")
parser.add_argument('-previous_context', type=int, default=0,
help="Number of previous sentence for context")
parser.add_argument('-max_memory_size', type=int, default=512,
help="Number of memory states stored in the buffer for XL models")
parser.add_argument('-tgt',
help='True target sequence (optional)')
parser.add_argument('-output', default='pred.txt',
help="""Path to output the predictions (each line will
be the decoded sequence""")
parser.add_argument('-beam_size', type=int, default=5,
help='Beam size')
parser.add_argument('-batch_size', type=int, default=30,
help='Batch size')
parser.add_argument('-max_sent_length', type=int, default=256,
help='Maximum sentence length.')
parser.add_argument('-replace_unk', action="store_true",
help="""Replace the generated UNK tokens with the source
token that had highest attention weight. If phrase_table
is provided, it will lookup the identified source token and
give the corresponding target token. If it is not provided
(or the identified source token does not exist in the
table) then it will copy the source token""")
parser.add_argument('-start_with_bos', action="store_true",
help="""Add BOS token to the top of the source sentence""")
# parser.add_argument('-phrase_table',
# help="""Path to source-target dictionary to replace UNK
# tokens. See README.md for the format of this file.""")
parser.add_argument('-verbose', action="store_true",
help='Print scores and predictions for each sentence')
parser.add_argument('-sampling', action="store_true",
help='Using multinomial sampling instead of beam search')
parser.add_argument('-dump_beam', type=str, default="",
help='File to dump beam information to.')
parser.add_argument('-bos_token', type=str, default="<s>",
help='BOS Token (used in multilingual model). Default is <s>.')
parser.add_argument('-no_bos_gold', action="store_true",
help='BOS Token (used in multilingual model). Default is <s>.')
parser.add_argument('-n_best', type=int, default=1,
help="""If verbose is set, will output the n_best
decoded sentences""")
parser.add_argument('-no_repeat_ngram_size', type=int, default=0,
help="""If verbose is set, will output the n_best
decoded sentences""")
parser.add_argument('-alpha', type=float, default=0.6,
help="""Length Penalty coefficient""")
parser.add_argument('-beta', type=float, default=0.0,
help="""Coverage penalty coefficient""")
parser.add_argument('-print_nbest', action='store_true',
help='Output the n-best list instead of a single sentence')
parser.add_argument('-ensemble_op', default='mean', help="""Ensembling operator""")
parser.add_argument('-normalize', action='store_true',
help='To normalize the scores based on output length')
parser.add_argument('-no_buffering', action='store_true',
help='To remove buffering for transformer models (slower but more memory)')
parser.add_argument('-src_align_right', action='store_true',
help='To normalize the scores based on output length')
parser.add_argument('-fp16', action='store_true',
help='To use floating point 16 in decoding')
parser.add_argument('-gpu', type=int, default=-1,
help="Device to run on")
parser.add_argument('-fast_translate', action='store_true',
help='Using the fast decoder')
parser.add_argument('-global_search', action='store_true',
help='Using the global beam search for streaming')
parser.add_argument('-dynamic_max_len', action='store_true',
help='Using the fast decoder')
parser.add_argument('-dynamic_max_len_scale', type=float, default=5.0,
help='Using the fast decoder')
parser.add_argument('-dynamic_min_len_scale', type=float, default=0.0,
help='Using the fast decoder')
def reportScore(name, score_total, words_total):
print("%s AVG SCORE: %.4f, %s PPL: %.4f" % (
name, score_total / (words_total + 1e-9),
name, math.exp(-score_total / (words_total + 1e-9))))
def addone(f):
for line in f:
yield line
yield None
def lenPenalty(s, l, alpha):
l_term = math.pow(l, alpha)
return s / l_term
def getSentenceFromTokens(tokens, input_type):
if input_type == 'word':
sent = " ".join(tokens)
elif input_type == 'char':
sent = "".join(tokens)
else:
raise NotImplementedError
return sent
def main():
opt = parser.parse_args()
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
# Always pick n_best
opt.n_best = opt.beam_size
if opt.output == "stdout":
outF = sys.stdout
else:
outF = open(opt.output, 'w')
pred_score_total, pred_words_total, gold_score_total, gold_words_total = 0, 0, 0, 0
src_batches = []
src_batch, tgt_batch = [], []
count = 0
tgtF = open(opt.tgt) if opt.tgt else None
#
# if opt.dump_beam != "":
# import json
# translator.initBeamAccum()
in_file = None
if opt.src == "stdin":
in_file = sys.stdin
opt.batch_size = 1
elif opt.encoder_type == "audio" and opt.asr_format == "h5":
in_file = h5.File(opt.src, 'r')
elif opt.encoder_type == "audio" and opt.asr_format == "scp":
import kaldiio
from kaldiio import ReadHelper
audio_data = iter(ReadHelper('scp:' + opt.src))
else:
in_file = open(opt.src)
if opt.streaming:
if opt.batch_size != 1:
opt.batch_size = 1
print("Warning: Streaming only works with batch size 1")
if opt.global_search:
print(" Using global search algorithm ")
from onmt.inference.global_translator import GlobalStreamTranslator
translator = GlobalStreamTranslator(opt)
else:
translator = StreamTranslator(opt)
else:
if opt.fast_translate:
translator = FastTranslator(opt)
else:
translator = onmt.Translator(opt)
# Audio processing for the source batch
if opt.encoder_type == "audio":
s_prev_context = []
t_prev_context = []
i = 0
concats = opt.concat.split("|")
n_models = len(opt.model.split("|"))
if len(concats) == 1:
concats = concats * n_models
assert len(concats) == n_models, "The number of models must match the number of concat configs"
for j, _ in enumerate(concats):
src_batches.append(list()) #
while True:
if opt.asr_format == "h5":
if i == len(in_file):
break
line = np.array(in_file[str(i)])
i += 1
elif opt.asr_format == "scp":
try:
_, line = next(audio_data)
except StopIteration:
break
if opt.stride != 1:
line = line[0::opt.stride]
line = torch.from_numpy(line)
original_line = line
for j, concat_ in enumerate(concats):
concat = int(concat_)
line = original_line
if concat != 1:
add = (concat - line.size()[0] % concat) % concat
z = torch.FloatTensor(add, line.size()[1]).zero_()
line = torch.cat((line, z), 0)
line = line.reshape((line.size()[0] // concat, line.size()[1] * concat))
if opt.previous_context > 0:
s_prev_context.append(line)
for i in range(1, opt.previous_context + 1):
if i < len(s_prev_context):
line = torch.cat(
(torch.cat((s_prev_context[-i - 1], torch.zeros(1, line.size()[1]))), line))
if len(s_prev_context) > opt.previous_context:
s_prev_context = s_prev_context[-1 * opt.previous_context:]
src_batches[j] += [line]
if tgtF:
# ~ tgt_tokens = tgtF.readline().split() if tgtF else None
tline = tgtF.readline().strip()
if opt.previous_context > 0:
t_prev_context.append(tline)
for i in range(1, opt.previous_context + 1):
if i < len(s_prev_context):
tline = t_prev_context[-i - 1] + " # " + tline
if len(t_prev_context) > opt.previous_context:
t_prev_context = t_prev_context[-1 * opt.previous_context:]
if opt.input_type == 'word':
tgt_tokens = tline.split() if tgtF else None
elif opt.input_type == 'char':
tgt_tokens = list(tline.strip()) if tgtF else None
else:
raise NotImplementedError("Input type unknown")
tgt_batch += [tgt_tokens]
if len(src_batches[0]) < opt.batch_size:
continue
# TODO: if opt.concat is a list
print("Batch size:", len(src_batches[0]), len(tgt_batch))
pred_batch, pred_score, pred_length, gold_score, num_gold_words, all_gold_scores = translator.translate(
src_batches, tgt_batch, type='asr')
print("Result:", len(pred_batch))
count, pred_score, pred_words, gold_score, goldWords = \
translate_batch(opt, tgtF, count, outF, translator,
src_batches[0], tgt_batch, pred_batch,
pred_score,
pred_length, gold_score,
num_gold_words,
all_gold_scores, opt.input_type)
pred_score_total += pred_score
pred_words_total += pred_words
gold_score_total += gold_score
gold_words_total += goldWords
src_batch, tgt_batch = [], []
for j, _ in enumerate(src_batches):
src_batches[j] = []
# catch the last batch
if len(src_batches[0]) != 0:
print("Batch size:", len(src_batches[0]), len(tgt_batch))
pred_batch, pred_score, pred_length, gold_score, num_gold_words, all_gold_scores = translator.translate(
src_batches,
tgt_batch, type='asr')
print("Result:", len(pred_batch))
count, pred_score, pred_words, gold_score, goldWords \
= translate_batch(opt, tgtF, count, outF, translator,
src_batches[0], tgt_batch, pred_batch,
pred_score,
pred_length, gold_score,
num_gold_words,
all_gold_scores, opt.input_type)
pred_score_total += pred_score
pred_words_total += pred_words
gold_score_total += gold_score
gold_words_total += goldWords
src_batch, tgt_batch = [], []
for j, _ in enumerate(src_batches):
src_batches[j] = []
# Text processing
else:
for line in addone(in_file):
if line is not None:
if opt.input_type == 'word':
src_tokens = line.split()
elif opt.input_type == 'char':
src_tokens = list(line.strip())
else:
raise NotImplementedError("Input type unknown")
if line.strip() == "":
if opt.streaming:
print("Found a document break")
translator.reset_stream()
continue
src_batch += [src_tokens]
if tgtF:
# ~ tgt_tokens = tgtF.readline().split() if tgtF else None
if opt.input_type == 'word':
tgt_tokens = tgtF.readline().split() if tgtF else None
elif opt.input_type == 'char':
tgt_tokens = list(tgtF.readline().strip()) if tgtF else None
else:
raise NotImplementedError("Input type unknown")
tgt_batch += [tgt_tokens]
if len(src_batch) < opt.batch_size:
continue
else:
# at the end of file, check last batch
if len(src_batch) == 0:
break
# actually done beam search from the model
pred_batch, pred_score, pred_length, gold_score, num_gold_words, all_gold_scores = translator.translate(
src_batch,
tgt_batch)
# convert output tensor to words
count, pred_score, pred_words, gold_score, goldWords = translate_batch(opt, tgtF, count, outF, translator,
src_batch, tgt_batch,
pred_batch, pred_score, pred_length,
gold_score, num_gold_words,
all_gold_scores, opt.input_type)
pred_score_total += pred_score
pred_words_total += pred_words
gold_score_total += gold_score
gold_words_total += goldWords
src_batch, tgt_batch = [], []
if opt.verbose:
reportScore('PRED', pred_score_total, pred_words_total)
if tgtF: reportScore('GOLD', gold_score_total, gold_words_total)
if tgtF:
tgtF.close()
if opt.dump_beam:
json.dump(translator.beam_accum, open(opt.dump_beam, 'w'))
def translate_batch(opt, tgtF, count, outF, translator, src_batch, tgt_batch, pred_batch, pred_score, pred_length,
gold_score,
num_gold_words, all_gold_scores, input_type):
original_pred_batch = pred_batch
original_pred_score = pred_score
# if print n best list then do not print the scores
if opt.print_nbest:
opt.normalize = False
if opt.normalize and not opt.fast_translate:
pred_batch_ = []
pred_score_ = []
for bb, ss, ll in zip(pred_batch, pred_score, pred_length):
# ~ ss_ = [s_/numpy.maximum(1.,len(b_)) for b_,s_,l_ in zip(bb,ss,ll)]
length = [len(i) for i in [''.join(b_) for b_ in bb]]
ss_ = [lenPenalty(s_, max(l_, 1), opt.alpha) for b_, s_, l_ in zip(bb, ss, length)]
ss_origin = [(s_, len(b_)) for b_, s_, l_ in zip(bb, ss, ll)]
sidx = numpy.argsort(ss_)[::-1]
# ~ print(ss_, sidx, ss_origin)
pred_batch_.append([bb[s] for s in sidx])
pred_score_.append([ss_[s] for s in sidx])
pred_batch = pred_batch_
pred_score = pred_score_
pred_score_total = sum(score[0].item() for score in pred_score)
pred_words_total = sum(len(x[0]) for x in pred_batch)
gold_score_total = 0
gold_words_total = 0
if tgtF is not None:
gold_score_total = sum(gold_score).item()
gold_words_total = num_gold_words
for b in range(len(pred_batch)):
count += 1
if not opt.print_nbest:
outF.write(getSentenceFromTokens(pred_batch[b][0], input_type) + '\n')
outF.flush()
else:
for n in range(opt.n_best):
idx = n
output_sent = getSentenceFromTokens(pred_batch[b][idx], input_type)
out_str = "%s ||| %.4f" % (output_sent, pred_score[b][idx])
outF.write(out_str + '\n')
outF.flush()
if opt.verbose:
if opt.encoder_type == "text":
src_sent = " ".join(src_batch[b])
print('SRC %d: %s' % (count, src_sent))
print('PRED %d: %s' % (count, getSentenceFromTokens(pred_batch[b][0], input_type)))
print("PRED SCORE: %.4f" % pred_score[b][0])
if tgtF is not None:
tgt_sent = getSentenceFromTokens(tgt_batch[b], input_type)
if translator.tgt_dict.lower:
tgt_sent = tgt_sent.lower()
print('GOLD %d: %s ' % (count, tgt_sent))
print("GOLD SCORE: %.4f" % gold_score[b])
# print("Single GOLD Scores:",end=" ")
# for j in range(len(tgt_batch[b])):
# print(all_gold_scores[j][b].item(),end =" ")
print()
if opt.print_nbest:
print('\n BEST HYP:')
for n in range(opt.n_best):
idx = n
out_str = "%s ||| %.4f" % (" ".join(pred_batch[b][idx]), pred_score[b][idx])
print(out_str)
print('')
return count, pred_score_total, pred_words_total, gold_score_total, gold_words_total
if __name__ == "__main__":
main()