forked from google-deepmind/open_spiel
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
-- 10a55ff by Asugawara <asgasw@gmail.com>: add nfsp -- 7908ccc by Asugawara <asgasw@gmail.com>: add Sonnet Linear Module -- 5671c9f by Asugawara <asgasw@gmail.com>: action_probs: LongTensor to Tensor -- b6b9d7d by Asugawara <asgasw@gmail.com>: remove image and progress COPYBARA_INTEGRATE_REVIEW=google-deepmind#450 from Asugawara:nfsp_pytorch b6b9d7d PiperOrigin-RevId: 345889227 Change-Id: Ib5558b3e05f4cfe96c1a9854a6956100b03ee2d4
- Loading branch information
Showing
5 changed files
with
803 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,307 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from absl import logging\n", | ||
"import tensorflow.compat.v1 as tf\n", | ||
"\n", | ||
"from open_spiel.python import policy\n", | ||
"from open_spiel.python import rl_environment\n", | ||
"from open_spiel.python.algorithms import exploitability\n", | ||
"from open_spiel.python.algorithms import nfsp\n", | ||
"from open_spiel.python.pytorch import nfsp as nfsp_pt\n", | ||
"\n", | ||
"class NFSPPolicies(policy.Policy):\n", | ||
" \"\"\"Joint policy to be evaluated.\"\"\"\n", | ||
"\n", | ||
" def __init__(self, env, nfsp_policies, mode):\n", | ||
" game = env.game\n", | ||
" player_ids = [0, 1]\n", | ||
" super(NFSPPolicies, self).__init__(game, player_ids)\n", | ||
" self._policies = nfsp_policies\n", | ||
" self._mode = mode\n", | ||
" self._obs = {\"info_state\": [None, None], \"legal_actions\": [None, None]}\n", | ||
"\n", | ||
" def action_probabilities(self, state, player_id=None):\n", | ||
" cur_player = state.current_player()\n", | ||
" legal_actions = state.legal_actions(cur_player)\n", | ||
"\n", | ||
" self._obs[\"current_player\"] = cur_player\n", | ||
" self._obs[\"info_state\"][cur_player] = (\n", | ||
" state.information_state_tensor(cur_player))\n", | ||
" self._obs[\"legal_actions\"][cur_player] = legal_actions\n", | ||
"\n", | ||
" info_state = rl_environment.TimeStep(\n", | ||
" observations=self._obs, rewards=None, discounts=None, step_type=None)\n", | ||
"\n", | ||
" with self._policies[cur_player].temp_mode_as(self._mode):\n", | ||
" p = self._policies[cur_player].step(info_state, is_evaluation=True).probs\n", | ||
" prob_dict = {action: p[action] for action in legal_actions}\n", | ||
" return prob_dict\n", | ||
"\n", | ||
"\n", | ||
"def tf_main(game,\n", | ||
" env_config,\n", | ||
" num_train_episodes,\n", | ||
" eval_every,\n", | ||
" hidden_layers_sizes,\n", | ||
" replay_buffer_capacity,\n", | ||
" reservoir_buffer_capacity,\n", | ||
" anticipatory_param):\n", | ||
" env = rl_environment.Environment(game, **env_configs)\n", | ||
" info_state_size = env.observation_spec()[\"info_state\"][0]\n", | ||
" num_actions = env.action_spec()[\"num_actions\"]\n", | ||
"\n", | ||
" hidden_layers_sizes = [int(l) for l in hidden_layers_sizes]\n", | ||
" kwargs = {\n", | ||
" \"replay_buffer_capacity\": replay_buffer_capacity,\n", | ||
" \"epsilon_decay_duration\": num_train_episodes,\n", | ||
" \"epsilon_start\": 0.06,\n", | ||
" \"epsilon_end\": 0.001,\n", | ||
" }\n", | ||
" expl_list = []\n", | ||
" with tf.Session() as sess:\n", | ||
" # pylint: disable=g-complex-comprehension\n", | ||
" agents = [\n", | ||
" nfsp.NFSP(sess, idx, info_state_size, num_actions, hidden_layers_sizes,\n", | ||
" reservoir_buffer_capacity, anticipatory_param,\n", | ||
" **kwargs) for idx in range(num_players)\n", | ||
" ]\n", | ||
" expl_policies_avg = NFSPPolicies(env, agents, nfsp.MODE.average_policy)\n", | ||
"\n", | ||
" sess.run(tf.global_variables_initializer())\n", | ||
" for ep in range(num_train_episodes):\n", | ||
" if (ep + 1) % eval_every == 0:\n", | ||
" losses = [agent.loss for agent in agents]\n", | ||
" print(\"Losses: %s\" %losses)\n", | ||
" expl = exploitability.exploitability(env.game, expl_policies_avg)\n", | ||
" expl_list.append(expl)\n", | ||
" print(\"[%s] Exploitability AVG %s\" %(ep + 1, expl))\n", | ||
" print(\"_____________________________________________\")\n", | ||
"\n", | ||
" time_step = env.reset()\n", | ||
" while not time_step.last():\n", | ||
" player_id = time_step.observations[\"current_player\"]\n", | ||
" agent_output = agents[player_id].step(time_step)\n", | ||
" action_list = [agent_output.action]\n", | ||
" time_step = env.step(action_list)\n", | ||
"\n", | ||
" # Episode is over, step all agents with final info state.\n", | ||
" for agent in agents:\n", | ||
" agent.step(time_step)\n", | ||
" return expl_list\n", | ||
" \n", | ||
"def pt_main(game,\n", | ||
" env_config,\n", | ||
" num_train_episodes,\n", | ||
" eval_every,\n", | ||
" hidden_layers_sizes,\n", | ||
" replay_buffer_capacity,\n", | ||
" reservoir_buffer_capacity,\n", | ||
" anticipatory_param):\n", | ||
" env = rl_environment.Environment(game, **env_configs)\n", | ||
" info_state_size = env.observation_spec()[\"info_state\"][0]\n", | ||
" num_actions = env.action_spec()[\"num_actions\"]\n", | ||
"\n", | ||
" hidden_layers_sizes = [int(l) for l in hidden_layers_sizes]\n", | ||
" kwargs = {\n", | ||
" \"replay_buffer_capacity\": replay_buffer_capacity,\n", | ||
" \"epsilon_decay_duration\": num_train_episodes,\n", | ||
" \"epsilon_start\": 0.06,\n", | ||
" \"epsilon_end\": 0.001,\n", | ||
" }\n", | ||
" expl_list = []\n", | ||
" agents = [\n", | ||
" nfsp_pt.NFSP(idx, info_state_size, num_actions, hidden_layers_sizes,\n", | ||
" reservoir_buffer_capacity, anticipatory_param,\n", | ||
" **kwargs) for idx in range(num_players)\n", | ||
" ]\n", | ||
" expl_policies_avg = NFSPPolicies(env, agents, nfsp_pt.MODE.average_policy) \n", | ||
" for ep in range(num_train_episodes):\n", | ||
" if (ep + 1) % eval_every == 0:\n", | ||
" losses = [agent.loss.item() for agent in agents]\n", | ||
" print(\"Losses: %s\" %losses)\n", | ||
" expl = exploitability.exploitability(env.game, expl_policies_avg)\n", | ||
" expl_list.append(expl)\n", | ||
" print(\"[%s] Exploitability AVG %s\" %(ep + 1, expl))\n", | ||
" print(\"_____________________________________________\") \n", | ||
" time_step = env.reset()\n", | ||
" while not time_step.last():\n", | ||
" player_id = time_step.observations[\"current_player\"]\n", | ||
" agent_output = agents[player_id].step(time_step)\n", | ||
" action_list = [agent_output.action]\n", | ||
" time_step = env.step(action_list) \n", | ||
" # Episode is over, step all agents with final info state.\n", | ||
" for agent in agents:\n", | ||
" agent.step(time_step)\n", | ||
" return expl_list" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"game = \"kuhn_poker\"\n", | ||
"num_players = 2\n", | ||
"env_configs = {\"players\": num_players}\n", | ||
"num_train_episodes = int(3e6)\n", | ||
"eval_every = 10000\n", | ||
"hidden_layers_sizes = [128]\n", | ||
"replay_buffer_capacity = int(2e5)\n", | ||
"reservoir_buffer_capacity = int(2e6)\n", | ||
"anticipatory_param = 0.1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tf_kuhn_result = tf_main(game, \n", | ||
" env_configs,\n", | ||
" num_train_episodes,\n", | ||
" eval_every,\n", | ||
" hidden_layers_sizes,\n", | ||
" replay_buffer_capacity,\n", | ||
" reservoir_buffer_capacity,\n", | ||
" anticipatory_param)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pt_kuhn_result = pt_main(game, \n", | ||
" env_configs,\n", | ||
" num_train_episodes,\n", | ||
" eval_every,\n", | ||
" hidden_layers_sizes,\n", | ||
" replay_buffer_capacity,\n", | ||
" reservoir_buffer_capacity,\n", | ||
" anticipatory_param)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"x = [i*1000 for i in range(len(tf_kuhn_result))]\n", | ||
"\n", | ||
"plt.plot(x, tf_kuhn_result, label='tensorflow')\n", | ||
"plt.plot(x, pt_kuhn_result, label='pytorch')\n", | ||
"plt.title('Kuhn Poker')\n", | ||
"plt.xlabel('Episodes')\n", | ||
"plt.ylabel('Exploitability')\n", | ||
"plt.legend()\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"game = \"leduc_poker\"\n", | ||
"num_players = 2\n", | ||
"env_configs = {\"players\": num_players}\n", | ||
"num_train_episodes = int(3e6)\n", | ||
"eval_every = 100000\n", | ||
"hidden_layers_sizes = [128]\n", | ||
"replay_buffer_capacity = int(2e5)\n", | ||
"reservoir_buffer_capacity = int(2e6)\n", | ||
"anticipatory_param = 0.1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"tf_leduc_result = tf_main(game, \n", | ||
" env_configs,\n", | ||
" num_train_episodes,\n", | ||
" eval_every,\n", | ||
" hidden_layers_sizes,\n", | ||
" replay_buffer_capacity,\n", | ||
" reservoir_buffer_capacity,\n", | ||
" anticipatory_param)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pt_leduc_result = pt_main(game, \n", | ||
" env_configs,\n", | ||
" num_train_episodes,\n", | ||
" eval_every,\n", | ||
" hidden_layers_sizes,\n", | ||
" replay_buffer_capacity,\n", | ||
" reservoir_buffer_capacity,\n", | ||
" anticipatory_param)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"x = [i * 10000 for i in range(len(tf_leduc_result))]\n", | ||
"\n", | ||
"plt.plot(x, tf_leduc_result, label='tensorflow')\n", | ||
"plt.plot(x, pt_leduc_result, label='pytorch')\n", | ||
"plt.title('Leduc Poker')\n", | ||
"plt.xlabel('Episodes')\n", | ||
"plt.ylabel('Exploitability')\n", | ||
"plt.legend()\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.