-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
273 lines (226 loc) · 8.01 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os, torchvision, PIL
import torch
from PIL import Image
import torch.nn.functional as F
import torch.utils.data as data
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.nn.modules.loss import _Loss
from torch.utils.data.sampler import SubsetRandomSampler
class ImageFolder(data.Dataset):
def __init__(self, args, file_path, mode):
self.args = args
self.mode = mode
if mode == 'gan':
self.img_path = args["dataset"]["img_gan_path"]
else:
self.img_path = args["dataset"]["img_path"]
self.model_name = args["dataset"]["model_name"]
# self.img_list = os.listdir(self.img_path)
self.processor = self.get_processor()
self.name_list, self.label_list = self.get_list(file_path)
self.image_list = self.load_img()
self.num_img = len(self.image_list)
self.n_classes = args["dataset"]["n_classes"]
if self.mode is not "gan":
print("Load " + str(self.num_img) + " images")
def get_list(self, file_path):
name_list, label_list = [], []
f = open(file_path, "r")
for line in f.readlines():
if self.mode == "gan":
img_name = line.strip()
else:
img_name, iden = line.strip().split(' ')
label_list.append(int(iden))
name_list.append(img_name)
return name_list, label_list
def load_img(self):
img_list = []
for i, img_name in enumerate(self.name_list):
if img_name.endswith(".png") or img_name.endswith(".jpg") or img_name.endswith(".jpeg") :
path = self.img_path + "/" + img_name
img = PIL.Image.open(path)
img = img.convert('RGB')
img_list.append(img)
return img_list
def get_processor(self):
if self.model_name in ("FaceNet", "FaceNet_all"):
re_size = 112
else:
re_size = 64
if self.args["dataset"]["name"] =='celeba':
crop_size = 108
offset_height = (218 - crop_size) // 2
offset_width = (178 - crop_size) // 2
elif self.args["dataset"]["name"] == 'facescrub':
# NOTE: dataset face scrub
if self.mode=='gan':
crop_size = 54
offset_height = (64 - crop_size) // 2
offset_width = (64 - crop_size) // 2
else:
crop_size = 108
offset_height = (218 - crop_size) // 2
offset_width = (178 - crop_size) // 2
elif self.args["dataset"]["name"] == 'ffhq':
# print('ffhq')
#NOTE: dataset ffhq
if self.mode=='gan':
crop_size = 88
offset_height = (128 - crop_size) // 2
offset_width = (128 - crop_size) // 2
else:
crop_size = 108
offset_height = (218 - crop_size) // 2
offset_width = (178 - crop_size) // 2
# #NOTE: dataset pf83
# crop_size = 176
# offset_height = (256 - crop_size) // 2
# offset_width = (256 - crop_size) // 2
crop = lambda x: x[:, offset_height:offset_height + crop_size, offset_width:offset_width + crop_size]
proc = []
if self.mode == "train":
proc.append(transforms.ToTensor())
proc.append(transforms.Lambda(crop))
proc.append(transforms.ToPILImage())
proc.append(transforms.Resize((re_size, re_size)))
proc.append(transforms.RandomHorizontalFlip(p=0.5))
proc.append(transforms.ToTensor())
else:
proc.append(transforms.ToTensor())
if self.mode=='test' or self.mode=='train' or self.args["dataset"]["name"] != 'facescrub':
proc.append(transforms.Lambda(crop))
proc.append(transforms.ToPILImage())
proc.append(transforms.Resize((re_size, re_size)))
proc.append(transforms.ToTensor())
return transforms.Compose(proc)
def __getitem__(self, index):
processer = self.get_processor()
img = processer(self.image_list[index])
if self.mode == "gan":
return img
label = self.label_list[index]
return img, label
def __len__(self):
return self.num_img
class GrayFolder(data.Dataset):
def __init__(self, args, file_path, mode):
self.args = args
self.mode = mode
self.img_path = args["dataset"]["img_path"]
self.img_list = os.listdir(self.img_path)
self.processor = self.get_processor()
self.name_list, self.label_list = self.get_list(file_path)
self.image_list = self.load_img()
self.num_img = len(self.image_list)
self.n_classes = args["dataset"]["n_classes"]
print("Load " + str(self.num_img) + " images")
def get_list(self, file_path):
name_list, label_list = [], []
f = open(file_path, "r")
for line in f.readlines():
if self.mode == "gan":
img_name = line.strip()
else:
img_name, iden = line.strip().split(' ')
label_list.append(int(iden))
name_list.append(img_name)
return name_list, label_list
def load_img(self):
img_list = []
for i, img_name in enumerate(self.name_list):
if img_name.endswith(".png"):
path = self.img_path + "/" + img_name
img = PIL.Image.open(path)
img = img.convert('L')
img_list.append(img)
return img_list
def get_processor(self):
proc = []
if self.args['dataset']['name'] == "mnist":
re_size = 32
else:
re_size = 64
proc.append(transforms.Resize((re_size, re_size)))
proc.append(transforms.ToTensor())
return transforms.Compose(proc)
def __getitem__(self, index):
processer = self.get_processor()
img = processer(self.image_list[index])
if self.mode == "gan":
return img
label = self.label_list[index]
return img, label
def __len__(self):
return self.num_img
def load_mnist():
transform = transforms.Compose([transforms.ToTensor()])
trainset = torchvision.datasets.MNIST(mnist_path, train=True, transform=transform, download=True)
testset = torchvision.datasets.MNIST(mnist_path, train=False, transform=transform, download=True)
train_loader = DataLoader(trainset, batch_size=1)
test_loader = DataLoader(testset, batch_size=1)
cnt = 0
for imgs, labels in train_loader:
cnt += 1
img_name = str(cnt) + '_' + str(labels.item()) + '.png'
# utils.save_tensor_images(imgs, os.path.join(mnist_img_path, img_name))
print("number of train files:", cnt)
for imgs, labels in test_loader:
cnt += 1
img_name = str(cnt) + '_' + str(labels.item()) + '.png'
# utils.save_tensor_images(imgs, os.path.join(mnist_img_path, img_name))
class celeba(data.Dataset):
def __init__(self, data_path=None, label_path=None):
self.data_path = data_path
self.label_path = label_path
# Data transforms
crop_size = 108
offset_height = (218 - crop_size) // 2
offset_width = (178 - crop_size) // 2
proc = []
proc.append(transforms.ToTensor())
proc.append(transforms.Lambda(crop))
proc.append(transforms.ToPILImage())
proc.append(transforms.Resize((112, 112)))
proc.append(transforms.ToTensor())
proc.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)))
self.transform = transforms.Compose(proc)
def __len__(self):
return len(self.data_path)
def __getitem__(self, idx):
image_set = Image.open(self.data_path[idx])
image_tensor = self.transform(image_set)
image_label = torch.Tensor(self.label_path[idx])
return image_tensor, image_label
def load_attri(file_path):
data_path = sorted(glob.glob('./data/img_align_celeba_png/*.png'))
print(len(data_path))
# get label
att_path = './data/list_attr_celeba.txt'
att_list = open(att_path).readlines()[2:] # start from 2nd row
data_label = []
for i in range(len(att_list)):
data_label.append(att_list[i].split())
# transform label into 0 and 1
for m in range(len(data_label)):
data_label[m] = [n.replace('-1', '0') for n in data_label[m]][1:]
data_label[m] = [int(p) for p in data_label[m]]
dataset = celeba(data_path, data_label)
# split data into train, valid, test set 7:2:1
indices = list(range(202599))
split_train = 141819
split_valid = 182339
train_idx, valid_idx, test_idx = indices[:split_train], indices[split_train:split_valid], indices[split_valid:]
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
test_sampler = SubsetRandomSampler(test_idx)
trainloader = torch.utils.data.DataLoader(dataset, batch_size=64, sampler=train_sampler)
validloader = torch.utils.data.DataLoader(dataset, sampler=valid_sampler)
testloader = torch.utils.data.DataLoader(dataset, sampler=test_sampler)
print(len(trainloader))
print(len(validloader))
print(len(testloader))
return trainloader, validloader, testloader
if __name__ == "__main__":
print("ok")