-
Notifications
You must be signed in to change notification settings - Fork 19
/
ROSETTA.Rd
94 lines (71 loc) · 6.29 KB
/
ROSETTA.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ROSETTA.R
\name{ROSETTA}
\alias{ROSETTA}
\title{Query USDA-ARS ROSETTA Model API}
\usage{
ROSETTA(
x,
vars,
v = c("1", "2", "3"),
include.sd = FALSE,
chunkSize = 10000,
conf = NULL
)
}
\arguments{
\item{x}{a \code{data.frame} of required soil properties, may contain other columns, see details}
\item{vars}{character vector of column names in \code{x} containing relevant soil property values, see details}
\item{v}{ROSETTA model version number: '1', '2', or '3', see details and references.}
\item{include.sd}{logical, include bootstrap standard deviation for estimated parameters}
\item{chunkSize}{number of records per API call}
\item{conf}{configuration passed to \code{httr::POST()} such as \code{verbose()}.}
}
\description{
A simple interface to the \href{https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/model/rosetta-model/}{ROSETTA model} for predicting hydraulic parameters from soil properties. The ROSETTA API was developed by Dr. Todd Skaggs (USDA-ARS) and links to the work of Zhang and Schaap, (2017). See the \href{http://ncss-tech.github.io/AQP/soilDB/ROSETTA-API.html}{related tutorial} for additional examples.
}
\details{
Soil properties supplied in \code{x} must be described, in order, via \code{vars} argument. The API does not use the names but column ordering must follow: sand, silt, clay, bulk density, volumetric water content at 33kPa (1/3 bar), and volumetric water content at 1500kPa (15 bar).
The ROSETTA model relies on a minimum of 3 soil properties, with increasing (expected) accuracy as additional properties are included:
\itemize{
\item required, sand, silt, clay: USDA soil texture separates (percentages) that sum to 100 percent
\item optional, bulk density (any moisture basis): mass per volume after accounting for >2mm fragments, units of gm/cm3
\item optional, volumetric water content at 33 kPa: roughly "field capacity" for most soils, units of cm^3/cm^3
\item optional, volumetric water content at 1500 kPa: roughly "permanent wilting point" for most plants, units of cm^3/cm^3
}
The Rosetta pedotransfer function predicts five parameters for the van Genuchten model of unsaturated soil hydraulic properties
\itemize{
\item theta_r : residual volumetric water content
\item theta_s : saturated volumetric water content
\item log10(alpha) : retention shape parameter \verb{[log10(1/cm)]}
\item log10(npar) : retention shape parameter
\item log10(ksat) : saturated hydraulic conductivity \verb{[log10(cm/d)]}
}
Column names not specified in \code{vars} are retained in the output.
Three versions of the ROSETTA model are available, selected using "v = 1", "v = 2", or "v = 3".
\itemize{
\item version 1 - Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3-4): 163-176. doi: \doi{10.1016/S0022-1694(01)00466-8}.
\item version 2 - Schaap, M.G., A. Nemes, and M.T. van Genuchten. 2004. Comparison of Models for Indirect Estimation of Water Retention and Available Water in Surface Soils. Vadose Zone Journal 3(4): 1455-1463. doi: \doi{10.2136/vzj2004.1455}.
\item version 3 - Zhang, Y., and M.G. Schaap. 2017. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). Journal of Hydrology 547: 39-53. doi: \doi{10.1016/j.jhydrol.2017.01.004}.
}
}
\references{
Consider using the interactive version, with copy/paste functionality at: \url{https://www.handbook60.org/rosetta}.
Rosetta Model Home Page: \url{https://www.ars.usda.gov/pacific-west-area/riverside-ca/agricultural-water-efficiency-and-salinity-research-unit/docs/model/rosetta-model/}.
Python ROSETTA model: \url{https://pypi.org/project/rosetta-soil/}.
Yonggen Zhang, Marcel G. Schaap. 2017. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). Journal of Hydrology. 547: 39-53. \doi{10.1016/j.jhydrol.2017.01.004}.
Kosugi, K. 1999. General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. Soil Sci. Soc. Am. J. 63:270-277.
Mualem, Y. 1976. A new model predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12:513-522.
Schaap, M.G. and W. Bouten. 1996. Modeling water retention curves of sandy soils using neural networks. Water Resour. Res. 32:3033-3040.
Schaap, M.G., Leij F.J. and van Genuchten M.Th. 1998. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 62:847-855.
Schaap, M.G., and F.J. Leij, 1998. Database Related Accuracy and Uncertainty of Pedotransfer Functions, Soil Science 163:765-779.
Schaap, M.G., F.J. Leij and M. Th. van Genuchten. 1999. A bootstrap-neural network approach to predict soil hydraulic parameters. In: van Genuchten, M.Th., F.J. Leij, and L. Wu (eds), Proc. Int. Workshop, Characterization and Measurements of the Hydraulic Properties of Unsaturated Porous Media, pp 1237-1250, University of California, Riverside, CA.
Schaap, M.G., F.J. Leij, 1999, Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten, Submitted to Soil Sci. Soc. Am. J.
van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Am. J. 44:892-898.
Schaap, M.G., F.J. Leij, and M.Th. van Genuchten. 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3-4): 163-176. doi: \doi{10.1016/S0022-1694(01)00466-8}.
Schaap, M.G., A. Nemes, and M.T. van Genuchten. 2004. Comparison of Models for Indirect Estimation of Water Retention and Available Water in Surface Soils. Vadose Zone Journal 3(4): 1455-1463. doi: \doi{10.2136/vzj2004.1455}.
Zhang, Y., and M.G. Schaap. 2017. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). Journal of Hydrology 547: 39-53. doi: \doi{10.1016/j.jhydrol.2017.01.004}.
}
\author{
D.E. Beaudette, Todd Skaggs (ARS), Richard Reid
}