-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscOne.R
48 lines (47 loc) · 2.25 KB
/
scOne.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#' @title single-cell analysis of one sample
#' @description A wrapper of the standard workflow of Seurat
#' @param object Seurat object
#' @param nFeatures Number of variable features to use
#' @param nPC Number of principal components to use
#' @param resolution Value of the resolution parameter
#' @param perplexity Value of the perplexity parameter, set between 5 and 50
#'
#' @return Seurat object
#'
#' @author Wei Zhang
#' @export
scOne <- function(object = NULL, nFeatures = 2000, nPC = 30, resolution = 0.5,
perplexity = NULL) {
object <- Seurat::NormalizeData(object, normalization.method = "LogNormalize",
scale.factor = 10000)
object <- Seurat::FindVariableFeatures(object, selection.method = "vst",
nfeatures = nFeatures)
object <- Seurat::ScaleData(object, features = rownames(object))
object <- Seurat::RunPCA(object, features = Seurat::VariableFeatures(object))
object <- Seurat::FindNeighbors(object, dims = seq_len(nPC))
object <- Seurat::FindClusters(object, resolution = resolution)
object <- Seurat::RunUMAP(object, reduction = "pca", dims = seq_len(nPC))
if (is.null(perplexity)) {
object <- Seurat::RunTSNE(object, reduction = "pca", dims = seq_len(nPC))
} else {
object <- Seurat::RunTSNE(object, reduction = "pca", dims = seq_len(nPC),
perplexity = perplexity)
}
cols <- NA
if (length(levels(Seurat::Idents(object))) <= 36) {
cols = c("#1660A7", "#FF6A00", "#219418", "#CD0C18", "#814BB2", "#794339",
"#DC59B6", "#CC79A7", "#FF0000", "#11B3C6", "#AFB400", "#00FFFF",
"#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2",
"#D55E00", "#D55E00", "#CC79A7", "#00AFBB", "#E69F00", "#009E73",
"#56B4E9", "#F0E442", "#0072B2", "#D55E00", "#CC79A7", "#4477AA",
"#EE6677", "#228833", "#CCBB44", "#66CCEE", "#AA3377", "#BBBBBB")
object@misc$cols = cols
}
reductions <- intersect(c("pca", "tsne", "umap"), names(object))
for (reduction in reductions) {
meta_ids <- gsub("coord", toupper(reduction), c("coord_1", "coord_2"))
coord <- Seurat::Embeddings(object = object, reduction = reduction)[, c(1, 2)]
object <- Seurat::AddMetaData(object = object, metadata = coord, col.name = meta_ids)
}
return(object)
}