-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple.py.expected
218 lines (199 loc) · 14.8 KB
/
simple.py.expected
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#m> # Sample Saturn Notebook
#m>
#m> Some **test** *markup*:
#m>
#m> - item 1
#m> - item 2
#m>
#m> First, we import some necessary boilerplate.
import sys, os
import numpy as np
#m> Fix seed for testing
np.random.seed(42)
#m> Set up the matrix `a` on which we operate.
a = np.random.random((10,20))
#m> We can examine `a`'s shape:
print(a.shape)
#o> (10, 20)
a.shape
#o> (10, 20)
#chk>{{{
#chk>gANDIL74p48pahlbl9cc9HhvEdzvygk3xLnyHUyg9cZOkYQgcQAugAN9cQAoWAwAAABfX2J1aWx0aW5z
#chk>X19xAWNidWlsdGlucwpfX2RpY3RfXwpYAwAAAHN5c3ECY2RpbGwuX2RpbGwKX2ltcG9ydF9tb2R1bGUK
#chk>cQNYAwAAAHN5c3EEhXEFUnEGWAIAAABvc3EHaANoB4VxCFJxCVgCAAAAbnBxCmgDWAUAAABudW1weXEL
#chk>hXEMUnENWAEAAABhcQ5jZGlsbC5fZGlsbApfZ2V0X2F0dHIKcQ9oA1gcAAAAbnVtcHkuY29yZS5fbXVs
#chk>dGlhcnJheV91bWF0aHEQhXERUnESWAwAAABfcmVjb25zdHJ1Y3RxE4ZxFFJxFWNudW1weQpuZGFycmF5
#chk>CnEWSwCFcRdDAWJxGIdxGVJxGihLAUsKSxSGcRtjbnVtcHkKZHR5cGUKcRxYAgAAAGY4cR1LAEsBh3Ee
#chk>UnEfKEsDWAEAAAA8cSBOTk5K/////0r/////SwB0cSFiiUJABgAA7FFfHnf41z9U1rtoQGzuP1FnHo9+
#chk>bOc/sCxj1jUo4z+EISI3a/jDP0x/meGg98M/cFVknSK9rT+1t1UJt7frP61LkoxVPOM/goKa0oeo5j+A
#chk>fjgHGhSVP6VT42KACe8/9hPBv16j6j+YMAOQ7S3LPzgZ4F8KRsc/SDThicx5xz9oquR0tHjTP2M8BwDO
#chk>yuA/WjsvuPyk2z8OvTKMf6PSPyd1mYVMlOM/fCS/UO/awT9UQMp3f7LSPzi33PF4ctc/3I+5KEAw3T8u
#chk>OnlWKSDpP3SQHhbpjsk/E9Tux5t04D8X991lD/XiP3BDCTdZyKc/iqK45gFx4z+0PjUHvNPFP6CqbKA4
#chk>p7A/idDEM0Vd7j+gzkAmdebuP5+qih1k3uk/6rIgwMp+0z9we2MnCgG5P2HP9qg85eU/3FJ3XXUr3D+w
#chk>F4XT5T2/Pxhiqn76sN8/AGgYS1+boT8xcpAZJxntPzA4denZj9A/dn0F72Ez5T8euGYDE/PTP6ju1LBl
#chk>pOA/PFNFjqZ+4T9cQoCQT6nHP+Z/XlfWBu8/WIzMWePN6D9DopQVYBDuPw/mtPdsouw//bnoIv8h4z+0
#chk>YE5l/n/tP7gTQdJxp7Y/TFZVaPcVyT+g14P9ByinP/aawU420tQ/9oL6tRbg2D8aSlFUyF3RP0zVWIYE
#chk>heo/xte45wvV1j/ENNu81PrRP4efGi3EXeE/SIm9FM4Jwj+8O6kAmavpP+gXgEDAFbM/KJCx6ZOU7z/S
#chk>W5SpOrboP6ggsvSDb8k/AHg1B1yedj9XncuQQhjqPwZq2EqTnuY/xiMp1wZU5z/FgGwmP67oP7hBpB2X
#chk>9LI/3mc1PRrx1j+AWUc9mKm9P4NwZhOLnus/zDzM6Q7y4z9gZsPobi3VPzi+3StcRbA/cMlZZSLn0z8Y
#chk>z1O1zc/UPyp9XQ7vWOc/q1AZ7d5m5D+Ytj76C2TsP/Y7EPPEON4/8EMYf7qdvj+qSWW75tLmPxAN4+JZ
#chk>WOg/B6bxmPv14T/GNgZdw6voP9jOUthYmt8/A7jXMjq64D+6GuMA1VzbP6AtPLh4B5o/0Ht0xsWeuz/Q
#chk>MFR5fBegP3PH5l15XeQ/npaBjGge1D9eNcgKNkbgP+esjtjICu0/jLGryc7ozz80mFG8tkPaP0jvz5R5
#chk>Leg/oO0VH0JJzT/o5ymT9LSzP2brjq1Ji9I/cGUWLuaixD+qVn9KFcDtP5i6LkUf3Ok/rwZs9NdE5D/M
#chk>fdNRAePrP9mu34Cut+k/VAaqFofhxz+eeojj14/sPxkhTKlKQuE/nwR9vIzW6T9X2Wypx6zsP0QvQT8r
#chk>WtQ/sE616FwsvD9Q8Fy6+izNP9IQAei7Vds/zwdpTS0t6j+UGDjdGovrP4DFTVTWeXw/VugiugpY4D+I
#chk>7uCj3LbaP8w3FFsHbsw/mAafKH+vvj8U+POpfJvVP3xUrPhQLO4/dAfAWVuv1D8XfzvK7pngPzqHnZ0h
#chk>f+Y/OOaEGLVF1z9mAgS91hjvPxTN/ERezO4/+AeSfTMd0D/surJl69LfPzJILxmXQdM/XF/7n9M60j+g
#chk>8BKR2OKiP8AN6A+NgeM/4+akUfIV4D/QgB1CbFuqP7a0wvpX1dE/ZpOJnoMQ7T9kK+TK9qnOP0C1fkjq
#chk>i8I/Vg+VqzFT3z+bKTbScorvP4yve8mq+84/NstSaCKC5T+yhnoZMF/oPxjj3zPoas4/RGo2X4xN5z/6
#chk>LMNDwonXP3kG72/ZO+Q/b2WYGeBF5D+3BkTzECXhPxALjPk6Hbc/s1WaTMy66j+EyhAcqYfUP5wMIqvW
#chk>38c/wFnvtnrgpD8ryE1RmOjiP96G4XSbruU/oPIGW2b8kD/X7Tz7EGPgP8gilEXQ/cw/G3xiaEGl5D8c
#chk>Ygyfo1HGPx4dl3UpHOY/0FoknEXA2D+t0FkrsfntP3Cgz0pJmsE//Ljh9QfU1T/wtrDGmQy9P1ZxKhIX
#chk>l+0/tHvI+ikT7D8IEtSZHYLQP2Ins9yWHuU/ib3tK68m6j//CBF+NMThP80WC8Xl8uA/uKfwDwT1zj8Y
#chk>t+Q+ldW3P0exO9L9tew/0tGHhznQ7D9vPMH8XULkP+YgOwKqstU/NFWaHXNZ1j8j+2JnBzvnP0bgbJMg
#chk>tew/YDeeEQNj7D+aE42PvfToP3EidHEjYnUu
#chk>}}}
## Is this the best demarkation of the evaluated expression?
b = 5
#---#
print(b)
#o> 5
import matplotlib.pyplot as plt
plt.matshow(a)
plt.show()
#o> png{{{
#o> pngiVBORw0KGgoAAAANSUhEUgAAA8AAAAHgCAYAAABq5QSEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAP
#o> pngYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9t
#o> pngYXRwbG90bGliLm9yZy+WH4yJAAAeaUlEQVR4nO3ce5CV9Z3n8W9fpEHTtFduSwuoqFHxElHGS1I6UiKr
#o> pngjM6mMuqaFCGJyRq8MsbIbEQto8RMxiEmFkarjLjrdXZKzcYNmRQjum68gtE4lfFK1kYDKNFuwNhA99k/
#o> pngtuxJ19MaR2h+B7+vV9Upi0Mf61P0w8N59/N0N9RqtVoAAADAx1xj6QEAAACwLQhgAAAAUhDAAAAApCCA
#o> pngAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCC
#o> pngAAYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABA
#o> pngCgIYAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAA
#o> pngACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGCKu+GGG2L8
#o> png+PExdOjQmDJlSjzxxBOlJ8FWc8UVV0RDQ0O/x/777196FmyRhx9+OGbMmBFjxoyJhoaGuO+++/r9fq1W
#o> pngi3nz5sXo0aNj2LBhMXXq1HjxxRcLrYWP5k8d51/84hcr5/eTTjqp0FrgwxLAFHX33XfHnDlz4vLLL4/l
#o> pngy5fHIYccEtOmTYs1a9aUngZbzYEHHhi/+93v+h6PPPJI6UmwRTZs2BCHHHJI3HDDDQP+/ne/+924/vrr
#o> png48Ybb4zHH388dtppp5g2bVq8++6723gpfHR/6jiPiDjppJP6nd/vvPPObbgQ+CiaSw8gt+uuuy7OPvvs
#o> pngmDVrVkRE3HjjjfHAAw/ELbfcEpdeemnhdbB1NDc3x6hRo0rPgK1m+vTpMX369AF/r1arxYIFC+Jb3/pW
#o> pngnHrqqRERcdttt8XIkSPjvvvuizPOOGNbToWP7IOO8/e0tLQ4v8N2xhVgitm4cWMsW7Yspk6d2vdcY2Nj
#o> pngTJ06NR599NGCy2DrevHFF2PMmDGx1157xVlnnRWvvvpq6UkwaFasWBGrVq3qd25va2uLKVOmOLfzsbN0
#o> png6dIYMWJE7LfffnHOOefE2rVrS08C/gQBTDFvvvlm9PT0xMiRI/s9P3LkyFi1alWhVbB1TZkyJW699dZY
#o> pngvHhxLFy4MFasWBGf/vSnY926daWnwaB47/zt3M7H3UknnRS33XZbLFmyJK699tp46KGHYvr06dHT01N6
#o> pngGvAB3AINMIj++Pa5gw8+OKZMmRLjxo2Le+65J7785S8XXAbAlvjj2/knTZoUBx98cOy9996xdOnSOOGE
#o> pngEwouAz6IK8AUs/vuu0dTU1OsXr263/OrV6/2/TR8bO28886x7777xksvvVR6CgyK987fzu1ks9dee8Xu
#o> pngu+/u/A51TgBTzJAhQ+Lwww+PJUuW9D3X29sbS5YsiaOOOqrgMhg869evj5dffjlGjx5degoMigkTJsSo
#o> pngUaP6ndu7urri8ccfd27nY23lypWxdu1a53eoc26Bpqg5c+bEzJkzY/LkyXHkkUfGggULYsOGDX0/FRq2
#o> pngdxdffHHMmDEjxo0bF6+//npcfvnl0dTUFGeeeWbpafCRrV+/vt9VrhUrVsSvfvWr2HXXXWPPPfeMCy+8
#o> pngML797W/HxIkTY8KECXHZZZfFmDFj4rTTTiu4Gv59Pug433XXXePKK6+Mz372szFq1Kh4+eWX45JLLol9
#o> png9tknpk2bVnA18KcIYIo6/fTT44033oh58+bFqlWr4tBDD43FixdXfngKbK9WrlwZZ555Zqxduzb22GOP
#o> pngOPbYY+Oxxx6LPfbYo/Q0+MieeuqpOP744/t+PWfOnIiImDlzZtx6661xySWXxIYNG+KrX/1qvP3223Hs
#o> pngscfG4sWLY+jQoaUmw7/bBx3nCxcujGeffTYWLVoUb7/9dowZMyZOPPHEuOqqq6KlpaXUZOBDaKjVarXS
#o> pngIwAAAGCw+R5gAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMHWhu7s7rrji
#o> pngiuju7i49BQaN45wMHOdk4DiH7VdDrVarlR4BXV1d0dbWFp2dnTF8+PDSc2BQOM7JwHFOBo5z2H65AgwA
#o> pngAEAKAhgAAIAUmksPYPvV29sbr7/+erS2tkZDQ8MW/b+6urr6/Rc+jhznZOA4JwPHOfWqVqvFunXrYsyY
#o> pngMdHY6FrnQHwPMB/ZypUro729vfQMAADgj3R0dMTYsWNLz6hLrgDzkbW2tkZExL5nz4umIUMLr/k395/7
#o> png/dITKi5deVLpCQN6uqP+Tozjf9hTesJ2ofG3q0pPqPjikmWlJwxo3q9mlJ5QMXHUm6UnVGyasbb0hIr/
#o> png/tzjpSdU3LluXOkJA7r3kqmlJ1Q0/6H+zue1LbthbVCsGz+s9ISKN46ov89dRETLmvpLl7ZXektP6Kdn
#o> png07vxzL3f7nufTlX9HUVsN9677blpyNBoaqmfAG5trb/bPXbYaUjpCQNq3LF+Pm/vaW6qz390601jY/0d
#o> pngUzu2NpWeMKB6PM7r8ZxQa9ih9ISK4XV4Ph9Wq8+3Ts3N9XecNzfX3/m8HgO4ni4ivKdxWP197iIimobW
#o> png39+/piH1FcDv2dJvT/w4q79/WQAAAGAQCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABA
#o> pngCgIYAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAk7vhhhti/PjxMXTo0JgyZUo88cQTpScBAAAMCgGc2N13
#o> png3x1z5syJyy+/PJYvXx6HHHJITJs2LdasWVN6GgAAwFYngBO77rrr4uyzz45Zs2bFAQccEDfeeGPsuOOO
#o> pngccstt5SeBgAAsNUJ4KQ2btwYy5Yti6lTp/Y919jYGFOnTo1HH310wNd0d3dHV1dXvwcAAMD2QgAn9eab
#o> pngb0ZPT0+MHDmy3/MjR46MVatWDfia+fPnR1tbW9+jvb19W0wFAADYKgQwH9rcuXOjs7Oz79HR0VF6EgAA
#o> pngwIfWXHoAZey+++7R1NQUq1ev7vf86tWrY9SoUQO+pqWlJVpaWrbFPAAAgK3OFeCkhgwZEocffngsWbKk
#o> png77ne3t5YsmRJHHXUUQWXAQAADA5XgBObM2dOzJw5MyZPnhxHHnlkLFiwIDZs2BCzZs0qPQ0AAGCrE8CJ
#o> pngnX766fHGG2/EvHnzYtWqVXHooYfG4sWLKz8YCwAA4ONAACd37rnnxrnnnlt6BgAAwKDzPcAAAACkIIAB
#o> pngAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIA
#o> pngBgAAIIXm0gPY/m2csi6adtxUekafmSd/ufSEircm7Vx6woCG7V5/XwNb8Ze10hMqPvsf/0/pCRVPzJlc
#o> pngekLFnMUTS08YUNNu3aUnVGye8U7pCRW/veOTpSdUnPa5A0tPqGh+6fXSEwZ01/LrS0+o2LGhqfSEihve
#o> pngmlR6QsU/fm9q6QkVB/zt6tITBvTuzfX3HuG1xrGlJ/TT8279vberN/6EAAAASEEAAwAAkIIABgAAIAUB
#o> pngDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAU
#o> pngBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFAQwAAAAKQhgAAAA
#o> pngUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEA
#o> pngAEhBAAMAAJCCAAYAACAFAQwAAEAKzaUHsP0bf3V3NDeVXvFvnj97t9ITKvb91rOlJwzohn9ZWnpCxQUX
#o> pngn1d6QsWDn5pYekJFz7iW0hOqGntLLxjQ5g07lJ5QsengvUpPqFh+9E2lJ1RctveflZ5QccEeD5eeMKB/
#o> png3fSJ0hMqvvL4zNITKu4/amHpCRUP//N+pSdUdO89ovSEAbX8p5dKT6j4xF/9h9IT+unZWCs9oe65AgwA
#o> pngAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFAQw
#o> pngAAAAKQhgAAAAUhDAAAAApCCAE5s/f34cccQR0draGiNGjIjTTjstnn/++dKzAAAABoUATuyhhx6K2bNn
#o> pngx2OPPRa/+MUvYtOmTXHiiSfGhg0bSk8DAADY6ppLD6CcxYsX9/v1rbfeGiNGjIhly5bFZz7zmUKrAAAA
#o> pngBocrwPTp7OyMiIhdd9218BIAAICtzxVgIiKit7c3LrzwwjjmmGPioIMOGvBjuru7o7u7u+/XXV1d22oe
#o> pngAADAFnMFmIiImD17djz33HNx1113ve/HzJ8/P9ra2voe7e3t23AhAADAlhHAxLnnnhs//elP48EHH4yx
#o> pngY8e+78fNnTs3Ojs7+x4dHR3bcCUAAMCWcQt0YrVaLc4777y49957Y+nSpTFhwoQP/PiWlpZoaWnZRusA
#o> pngAAC2LgGc2OzZs+OOO+6I+++/P1pbW2PVqlUREdHW1hbDhg0rvA4AAGDrcgt0YgsXLozOzs447rjjYvTo
#o> png0X2Pu+++u/Q0AACArc4V4MRqtVrpCQAAANuMK8AAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIY
#o> pngAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQArNpQew/Vs5bfdoahla
#o> pngekafUY/1lp5QccpTHaUnDOgrf3dh6QkVw3aov8/fqo5dS0+o2P/pt0tPqPiLOU+XnjCgR6eNLz2h4oFl
#o> pngi0tPqPjr3/1Z6QkVz1x8aOkJFWc/WH/nqIiIac91lZ5Qse/oNaUnVFz52imlJ1RMvG9V6QkVL568qfSE
#o> pngAb0286DSEyrG/Hx16Qn9bO7pLj2h7rkCDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhB
#o> pngAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAg
#o> pngBQEMAABACgIYAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAA
#o> pnggBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGAA
#o> pngAABSaKjVarXSI9g+dXV1RVtbW9y6/JDYsbWp9Jw+lz83o/SEiqE/G156woBG3PdS6QkVb568T+kJFb3N
#o> pngpRdU7TPr+dITKn7zxsjSEwZ03aR7Sk+o+C//8NXSEyom/viN0hMqhty0rvSEirE7vl16woAe+PWk0hMq
#o> pngTj3kV6UnVPzPhyaXnlBRa6m/t+Itq+vnfd0fG3ftstITKhrbx5Se0M/mnu5Y8sr10dnZGcOH1+f7z9Jc
#o> pngAQYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABA
#o> pngCgIYAACAFAQwAAAAKQhgAAAAUhDARETEd77znWhoaIgLL7yw9BQAAIBBIYCJJ598Mn70ox/FwQcfXHoK
#o> pngAADAoBHAya1fvz7OOuusuPnmm2OXXXYpPQcAAGDQCODkZs+eHSeffHJMnTr1T35sd3d3dHV19XsAAABs
#o> pngL5pLD6Ccu+66K5YvXx5PPvnkh/r4+fPnx5VXXjnIqwAAAAaHK8BJdXR0xAUXXBC33357DB069EO9Zu7c
#o> pngudHZ2dn36OjoGOSVAAAAW48rwEktW7Ys1qxZE5/61Kf6nuvp6YmHH344fvjDH0Z3d3c0NTX1e01LS0u0
#o> pngtLRs66kAAABbhQBO6oQTTohf//rX/Z6bNWtW7L///vHNb36zEr8AAADbOwGcVGtraxx00EH9nttpp51i
#o> pngt912qzwPAADwceB7gAEAAEjBFWD6LF26tPQEAACAQeMKMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMA
#o> pngAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIobn0ALZ/tx29XzQ3DCk9
#o> pngo0/TXb2lJ1Q0bC69YGD/etlepSdU/MOM75eeUHHRReeWnlDx65/uX3pCxbF/+XTpCQO66rwvlZ5Qse/T
#o> pngK0pPqFj75+NLT6jY+eJhpSdUXPQ//rH0hAG1H/H70hMqbn95cukJFX8/47bSEyqe+0N76QkVD84+uvSE
#o> pngAf3Nbx4vPaFi5i/OLj2hn94/vBtxQekV9c0VYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwA
#o> pngAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFAQw
#o> pngAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQ
#o> pngwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABI
#o> pngQQADAACQQkOtVquVHsH2qaurK9ra2mLeY1Nj6Cd2KD2nz7E7PV96QsWF355desKA9vjfq0tPqHhn4m6l
#o> pngJ1SsObx+ju/3fOX0xaUnVIwb8mbpCQO6ad+9Sk+oePH6KaUnVAxd3VR6QsXIZZtKT6gYtuKt0hMGtPq4
#o> pngPUpPqLj/v/5t6QkVp135jdITKn5/WG/pCRX7H9hResKAXr93fOkJFY9/8/ulJ/TTta43Ru3XEZ2dnTF8
#o> png+PDSc+qSK8AAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFAQwAAAAKQhgAAAAUhDAAAAA
#o> pngpCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCOLHXXnstPv/5z8duu+0Ww4YNi0mTJsVTTz1VehYAAMCg
#o> pngaC49gDLeeuutOOaYY+L444+Pn/3sZ7HHHnvEiy++GLvsskvpaQAAAINCACd17bXXRnt7e/z4xz/ue27C
#o> pnghAkFFwEAAAwut0An9ZOf/CQmT54cn/vc52LEiBFx2GGHxc0331x6FgAAwKARwEm98sorsXDhwpg4cWL8
#o> png/Oc/j3POOSfOP//8WLRo0fu+pru7O7q6uvo9AAAAthdugU6qt7c3Jk+eHNdcc01ERBx22GHx3HPPxY03
#o> png3hgzZ84c8DXz58+PK6+8clvOBAAA2GpcAU5q9OjRccABB/R77pOf/GS8+uqr7/uauXPnRmdnZ9+jo6Nj
#o> pngsGcCAABsNa4AJ3XMMcfE888/3++5F154IcaNG/e+r2lpaYmWlpbBngYAADAoXAFO6qKLLorHHnssrrnm
#o> pngmnjppZfijjvuiJtuuilmz55dehoAAMCgEMBJHXHEEXHvvffGnXfeGQcddFBcddVVsWDBgjjrrLNKTwMA
#o> pngABgUboFO7JRTTolTTjml9AwAAIBtwhVgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoC
#o> pngGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJBCc+kBbP++tPO/xPDW+vlayinnXVh6QsXv
#o> pngP1MrPWFAjZtHlp5Q0bip/v6sxl33TOkJFTdNOqb0hIpNr+9UesKA9tv5N6UnVIz6ZUPpCRU/mL+g9ISK
#o> pngOc+eW3pCRW3YkNITBtS5b/2dO8c2f6L0hIqd1vSUnlAxdJ83S0+o2OsTa0tPGNCGV8aWnlAx87fTSk/o
#o> pngZ9OGjRFxa+kZda1+qgUAAAAGkQAGAAAgBQEMAABACgIYAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAAQAA
#o> pngSEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCCAAYA
#o> pngACAFAQwAAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIY
#o> pngAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAAACk0
#o> pnglx7A9m/698+LppahpWf0qc18q/SEip1KD3gfa4a1lp5QccD835WeUHHqUytKT6i46XsHl55QscsL75ae
#o> pngMKBaT2/pCRVr/qL+/qz++sW/Kj2hYugDy0pPqHj++5NLTxjQnv+rp/SEik9NPL30hIrd13aXnlBR22FT
#o> png6QkVD919eOkJA/rJDd8tPaHi6zO+UnpCP5t76u8YrzeuAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAA
#o> pngAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFARwUj09PXHZZZfFhAkT
#o> pngYtiwYbH33nvHVVddFbVarfQ0AACAQdFcegBlXHvttbFw4cJYtGhRHHjggfHUU0/FrFmzoq2tLc4///zS
#o> png8wAAALY6AZzUL3/5yzj11FPj5JNPjoiI8ePHx5133hlPPPFE4WUAAACDwy3QSR199NGxZMmSeOGFFyIi
#o> png4plnnolHHnkkpk+fXngZAADA4HAFOKlLL700urq6Yv/994+mpqbo6emJq6++Os4666z3fU13d3d0d3f3
#o> png/bqrq2tbTAUAANgqXAFO6p577onbb7897rjjjli+fHksWrQovve978WiRYve9zXz58+Ptra2vkd7e/s2
#o> pngXAwAALBlBHBS3/jGN+LSSy+NM844IyZNmhRf+MIX4qKLLor58+e/72vmzp0bnZ2dfY+Ojo5tuBgAAGDL
#o> pnguAU6qXfeeScaG/t//aOpqSl6e3vf9zUtLS3R0tIy2NMAAAAGhQBOasaMGXH11VfHnnvuGQceeGA8/fTT
#o> pngcd1118WXvvSl0tMAAAAGhQBO6gc/+EFcdtll8fWvfz3WrFkTY8aMia997Wsxb9680tMAAAAGhQBOqrW1
#o> pngNRYsWBALFiwoPQUAAGCb8EOwAAAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQ
#o> pngwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUmksPYPvXtLEWTVErPaPPqEs2lp5Q8Xf/
#o> png9N9KTxjQ/928S+kJFVf/0xdLT6i4ZUVL6QkV//min5eeUPGDx/+89ISBbfxk6QUVe95ZekHVTs/2lJ5Q
#o> png8TcvPVl6QkVTPFF6woC+2v750hMqdnhg19ITKt44tKH0hIqJLStLT6i44us/LD1hQK9sbis9oeKgW58v
#o> pngPaGf7vWb4p8/XXpFfXMFGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwA
#o> pngAEAKAhgAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFAQw
#o> pngAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAAQAoCGAAAgBQEMAAAACkIYAAAAFIQ
#o> pngwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAAAAApCGAAAABSaC49gO1XrVaLiIie
#o> pngje8WXtLf5p7u0hMq1q/rLT1hQO9s7ik9oWLzpvo6niIiejbU3zH17vrNpSdU9P6h/j53ERGxsf6+1rt5
#o> pngU+kFVZt76+8431CH586mqJWeMKCed+rv89dYZ+8PIiJ6mxpKT6jYtGFj6QkV9fh3LyLi3Vr9vW/pXl9f
#o> pngJ/SNG/7/nvfep1PVUPOnw0e0cuXKaG9vLz0DAAD4Ix0dHTF27NjSM+qSAOYj6+3tjddffz1aW1ujoWHL
#o> pngvqLa1dUV7e3t0dHREcOHD99KC6G+OM7JwHFOBo5z6lWtVot169bFmDFjorGx/u6AqgdugeYja2xs3Opf
#o> pngWRo+fLh/SPjYc5yTgeOcDBzn1KO2trbSE+qaLwsAAACQggAGAAAghaYrrrjiitIjICKiqakpjjvuuGhu
#o> pngdmc+H1+OczJwnJOB4xy2T34IFgAAACm4BRoAAIAUBDAAAAApCGAAAABSEMAAAACkIIABAABIQQADAACQ
#o> pngggAGAAAgBQEMAABACgIYAACAFAQwAAAAKQhgAAAAUhDAAAAApCCAAQAASEEAAwAAkIIABgAAIAUBDAAA
#o> pngQAoCGAAAgBQEMAAAACkIYAAAAFIQwAAAAKQggAEAAEhBAAMAAJCCAAYAACAFAQwAAEAKAhgAAIAUBDAA
#o> pngAAApCGAAAABSEMAAAACkIIABAABIQQADAACQggAGAAAgBQEMAABACgIYAACAFAQwAAAAKQhgAAAAUhDA
#o> pngAAAApPD/AJgCzY5ECXs+AAAAAElFTkSuQmCC
#o> png}}}
# vim: ft=python foldmethod=marker foldlevel=0