Skip to content

Latest commit

 

History

History

benchmarks

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Benchmark tools

These scripts are tools for collecting performance data for Docker-based tests.

Setup

The scripts assume the following:

  • There are two sets of machines: one where the scripts will be run (controller) and one or more machines on which docker containers will be run (environment).
  • The controller machine must have bazel installed along with this source code. You should be able to run a command like bazel run :benchmarks -- --list
  • Environment machines must have docker and the required runtimes installed. More specifically, you should be able to run a command like: docker run --runtime=$RUNTIME your/image.
  • The controller has ssh private key which can be used to login to environment machines and run docker commands without using sudo. This is not required if running locally via the run-local command.
  • The docker daemon on each of your environment machines is listening on unix:///var/run/docker.sock (docker's default).

For configuring the environment manually, consult the dockerd documentation.

Running benchmarks

Locally

The tool is built to, by default, use Google Cloud Platform to run benchmarks, but it does support GCP workflows. To run locally, run the following from the benchmarks directory:

bazel run --define gcloud=off :benchmarks -- run-local startup

...
method,metric,result
startup.empty,startup_time_ms,652.5772
startup.node,startup_time_ms,1654.4042000000002
startup.ruby,startup_time_ms,1429.835

The above command ran the startup benchmark locally, which consists of three benchmarks (empty, node, and ruby). Benchmark tools ran it on the default runtime, runc. Running on another installed runtime, like say runsc, is as simple as:

bazel run  --define gcloud=off :benchmarks -- run-local startup --runtime=runsc

There is help: bash bazel run --define gcloud=off :benchmarks -- --help bazel run --define gcloud=off :benchmarks -- run-local --help

To list available benchmarks, use the list commmand:

bazel --define gcloud=off  run :benchmarks -- list

...
Benchmark: sysbench.cpu
Metrics: events_per_second
    Run sysbench CPU test. Additional arguments can be provided for sysbench.

    :param max_prime: The maximum prime number to search.

You can choose benchmarks by name or regex like:

bazel run --define gcloud=off :benchmarks -- run-local startup.node
...
metric,result
startup_time_ms,1671.7178000000001

or

bazel run --define gcloud=off :benchmarks -- run-local s
...
method,metric,result
startup.empty,startup_time_ms,1792.8292
startup.node,startup_time_ms,3113.5274
startup.ruby,startup_time_ms,3025.2424
sysbench.cpu,cpu_events_per_second,12661.47
sysbench.memory,memory_ops_per_second,7228268.44
sysbench.mutex,mutex_time,17.4835
sysbench.mutex,mutex_latency,3496.7
sysbench.mutex,mutex_deviation,0.04
syscall.syscall,syscall_time_ns,2065.0

You can run parameterized benchmarks, for example to run with different runtimes:

bazel run --define gcloud=off :benchmarks -- run-local --runtime=runc --runtime=runsc sysbench.cpu

Or with different parameters:

bazel run --define gcloud=off :benchmarks -- run-local --max_prime=10 --max_prime=100 sysbench.cpu

On Google Compute Engine (GCE)

Benchmarks may be run on GCE in an automated way. The default project configured for gcloud will be used.

An additional parameter installers may be provided to ensure that the latest runtime is installed from the workspace. See the files in tools/installers for supported install targets.

bazel run :benchmarks -- run-gcp --installers=head --runtime=runsc sysbench.cpu

When running on GCE, the scripts generate a per run SSH key, which is added to your project. The key is set to expire in GCE after 60 minutes and is stored in a temporary directory on the local machine running the scripts.

Writing benchmarks

To write new benchmarks, you should familiarize yourself with the structure of the repository. There are three key components.

Harness

The harness makes use of the docker py SDK. It is advisable that you familiarize yourself with that API when making changes, specifically:

  • clients
  • containers
  • images

In general, benchmarks need only interact with the Machine objects provided to the benchmark function, which are the machines defined in the environment. These objects allow the benchmark to define the relationships between different containers, and parse the output.

Workloads

The harness requires workloads to run. These are all available in the workloads directory.

In general, a workload consists of a Dockerfile to build it (while these are not hermetic, in general they should be as fixed and isolated as possible), some parsers for output if required, parser tests and sample data. Provided the test is named after the workload package and contains a function named sample, this variable will be used to automatically mock workload output when the --mock flag is provided to the main tool.

Writing benchmarks

Benchmarks define the tests themselves. All benchmarks have the following function signature:

def my_func(output) -> float:
    return float(output)

@benchmark(metrics = my_func, machines = 1)
def my_benchmark(machine: machine.Machine, arg: str):
    return "3.4432"

Each benchmark takes a variable amount of position arguments as harness.Machine objects and some set of keyword arguments. It is recommended that you accept arbitrary keyword arguments and pass them through when constructing the container under test.

To write a new benchmark, open a module in the suites directory and use the above signature. You should add a descriptive doc string to describe what your benchmark is and any test centric arguments.