@inproceedings{zhu19deep,
title={Deep Leakage from Gradients},
author={Zhu, Ligeng and Liu, Zhijian and Han, Song},
booktitle={Advances in Neural Information Processing Systems},
year={2019}
}
Gradients exchaging is popular used in modern multi-node learning systems. People used to believe numerical gradients are safe to share. But we show that it is actually possible to obtain the training data from shared gradients and the leakage is pixel-wise accurate for images and token-wise matching for texts.
We release the PyTorch code of Deep Leakage from Gradients.
The core algorithm is to match the gradients between dummy data and real data. It can be implemented in less than 20 lines!
def deep_leakage_from_gradients(model, origin_grad):
dummy_data = torch.randn(origin_data.size())
dummy_label = torch.randn(dummy_label.size())
optimizer = torch.optim.LBFGS([dummy_data, dummy_label] )
for iters in range(300):
def closure():
optimizer.zero_grad()
dummy_pred = model(dummy_data)
dummy_loss = criterion(dummy_pred, dummy_label)
dummy_grad = grad(dummy_loss, model.parameters(), create_graph=True)
grad_diff = sum(((dummy_grad - origin_grad) ** 2).sum() \
for dummy_g, origin_g in zip(dummy_grad, origin_grad))
grad_diff.backward()
return grad_diff
optimizer.step(closure)
return dummy_data, dummy_label
To run the code, following libraies are required
- Python >= 3.6
- PyTorch >= 1.0
- torchvision >= 0.4
Note: We provide for quick reproduction.
# Single image on CIFAR
python main.py --index 25
# Deep Leakage on your own Image
python main.py --image yours.jpg
This repository is released under the MIT license. See LICENSE for additional details.